These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 23234177)

  • 1. Kinetic model for the mechanical response of suspensions of sponge-like particles.
    Hütter M; Faber TJ; Wyss HM
    Faraday Discuss; 2012; 158():407-24; discussion 493-522. PubMed ID: 23234177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheology of non-Brownian suspensions.
    Denn MM; Morris JF
    Annu Rev Chem Biomol Eng; 2014; 5():203-28. PubMed ID: 24655134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and rheology of colloidal particle gels: insight from computer simulation.
    Dickinson E
    Adv Colloid Interface Sci; 2013 Nov; 199-200():114-27. PubMed ID: 23916723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brownian dynamics without Green's functions.
    Delong S; Usabiaga FB; Delgado-Buscalioni R; Griffith BE; Donev A
    J Chem Phys; 2014 Apr; 140(13):134110. PubMed ID: 24712783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggregation in colloidal suspensions: effect of colloidal forces and hydrodynamic interactions.
    Kovalchuk NM; Starov VM
    Adv Colloid Interface Sci; 2012 Nov; 179-182():99-106. PubMed ID: 21645876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microstructure of sheared monosized colloidal suspensions resulting from hydrodynamic and electrostatic interactions.
    Xu B; Gilchrist JF
    J Chem Phys; 2014 May; 140(20):204903. PubMed ID: 24880321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructure evolution in magnetorheological suspensions governed by Mason number.
    Melle S; Calderón OG; Rubio MA; Fuller GG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 1):041503. PubMed ID: 14682943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interparticle interactions in concentrated suspensions and their bulk (rheological) properties.
    Tadros T
    Adv Colloid Interface Sci; 2011 Oct; 168(1-2):263-77. PubMed ID: 21632031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct numerical simulations for non-Newtonian rheology of concentrated particle dispersions.
    Iwashita T; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061402. PubMed ID: 20365170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Globally aligned states and hydrodynamic traffic jams in confined suspensions of active asymmetric particles.
    Lefauve A; Saintillan D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):021002. PubMed ID: 25353410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of a compound vesicle in shear flow.
    Veerapaneni SK; Young YN; Vlahovska PM; Bławzdziewicz J
    Phys Rev Lett; 2011 Apr; 106(15):158103. PubMed ID: 21568618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the viscosity and aggregation of suspensions of highly anisotropic nanoparticles.
    Puisto A; Illa X; Mohtaschemi M; Alava MJ
    Eur Phys J E Soft Matter; 2012 Jan; 35(1):6. PubMed ID: 22282294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion, sedimentation, and rheology of concentrated suspensions of core-shell particles.
    Abade GC; Cichocki B; Ekiel-Jeżewska ML; Nägele G; Wajnryb E
    J Chem Phys; 2012 Mar; 136(10):104902. PubMed ID: 22423856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Krylov subspace methods for computing hydrodynamic interactions in brownian dynamics simulations.
    Ando T; Chow E; Saad Y; Skolnick J
    J Chem Phys; 2012 Aug; 137(6):064106. PubMed ID: 22897254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rheological study of two-dimensional very anisometric colloidal particle suspensions: from shear-induced orientation to viscous dissipation.
    Philippe AM; Baravian C; Bezuglyy V; Angilella JR; Meneau F; Bihannic I; Michot LJ
    Langmuir; 2013 Apr; 29(17):5315-24. PubMed ID: 23544905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A theory for the phase behavior of mixtures of active particles.
    Takatori SC; Brady JF
    Soft Matter; 2015 Oct; 11(40):7920-31. PubMed ID: 26323207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model for particle migration in bidisperse suspensions by use of effective temperature.
    Vollebregt HM; van der Sman RG; Boom RM
    Faraday Discuss; 2012; 158():89-103; discussion 105-24. PubMed ID: 23234163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Instabilities and pattern formation in active particle suspensions: kinetic theory and continuum simulations.
    Saintillan D; Shelley MJ
    Phys Rev Lett; 2008 May; 100(17):178103. PubMed ID: 18518342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the Electrostatics of Hollow Shell Suspensions: Ion Distribution, Pair Interactions, and Many-Body Effects.
    Hallez Y; Meireles M
    Langmuir; 2016 Oct; 32(40):10430-10444. PubMed ID: 27623196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extensional rheology of active suspensions.
    Saintillan D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056307. PubMed ID: 20866322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.