BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 23234235)

  • 41. Bioactivity and toxicity studies of amphotericin B incorporated in liquid crystals.
    Chuealee R; Aramwit P; Noipha K; Srichana T
    Eur J Pharm Sci; 2011 Jul; 43(4):308-17. PubMed ID: 21616148
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Antileishmanial activity of nano-amphotericin B deoxycholate.
    Manandhar KD; Yadav TP; Prajapati VK; Kumar S; Rai M; Dube A; Srivastava ON; Sundar S
    J Antimicrob Chemother; 2008 Aug; 62(2):376-80. PubMed ID: 18453526
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The efficacy of aerosol treatment with non-ionic surfactant vesicles containing amphotericin B in rodent models of leishmaniasis and pulmonary aspergillosis infection.
    Alsaadi M; Italia JL; Mullen AB; Ravi Kumar MN; Candlish AA; Williams RA; Shaw CD; Al Gawhari F; Coombs GH; Wiese M; Thomson AH; Puig-Sellart M; Wallace J; Sharp A; Wheeler L; Warn P; Carter KC
    J Control Release; 2012 Jun; 160(3):685-91. PubMed ID: 22516093
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Water-soluble amphotericin B-polyvinylpyrrolidone complexes with maintained antifungal activity against Candida spp. and Aspergillus spp. and reduced haemolytic and cytotoxic effects.
    Charvalos E; Tzatzarakis MN; Van Bambeke F; Tulkens PM; Tsatsakis AM; Tzanakakis GN; Mingeot-Leclercq MP
    J Antimicrob Chemother; 2006 Feb; 57(2):236-44. PubMed ID: 16361329
    [TBL] [Abstract][Full Text] [Related]  

  • 45. PLGA nanoparticles and nanosuspensions with amphotericin B: Potent in vitro and in vivo alternatives to Fungizone and AmBisome.
    Van de Ven H; Paulussen C; Feijens PB; Matheeussen A; Rombaut P; Kayaert P; Van den Mooter G; Weyenberg W; Cos P; Maes L; Ludwig A
    J Control Release; 2012 Aug; 161(3):795-803. PubMed ID: 22641062
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Accelerated healing of cutaneous leishmaniasis in non-healing BALB/c mice using water soluble amphotericin B-polymethacrylic acid.
    Corware K; Harris D; Teo I; Rogers M; Naresh K; Müller I; Shaunak S
    Biomaterials; 2011 Nov; 32(31):8029-39. PubMed ID: 21807409
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Potent plasmodicidal activity of a heat-induced reformulation of deoxycholate-amphotericin B (Fungizone) against Plasmodium falciparum.
    Hatabu T; Takada T; Taguchi N; Suzuki M; Sato K; Kano S
    Antimicrob Agents Chemother; 2005 Feb; 49(2):493-6. PubMed ID: 15673723
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A novel mechanism for an old drug: amphotericin B in the treatment of visceral leishmaniasis.
    Chattopadhyay A; Jafurulla M
    Biochem Biophys Res Commun; 2011 Dec; 416(1-2):7-12. PubMed ID: 22100811
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Coalition of Biological Agent (Melatonin) With Chemotherapeutic Agent (Amphotericin B) for Combating Visceral Leishmaniasis via Oral Administration of Modified Solid Lipid Nanoparticles.
    Parvez S; Yadagiri G; Arora K; Javaid A; Kushwaha AK; Singh OP; Sundar S; Mudavath SL
    ACS Biomater Sci Eng; 2023 Jun; 9(6):2902-2910. PubMed ID: 34463477
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of high efficacy peptide coated iron oxide nanoparticles encapsulated amphotericin B drug delivery system against visceral leishmaniasis.
    Kumar R; Pandey K; Sahoo GC; Das S; Das V; Topno RK; Das P
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1465-1471. PubMed ID: 28415438
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Amphotericin B encapsulated in micelles based on poly(ethylene oxide)-block-poly(L-amino acid) derivatives exerts reduced in vitro hemolysis but maintains potent in vivo antifungal activity.
    Adams ML; Andes DR; Kwon GS
    Biomacromolecules; 2003; 4(3):750-7. PubMed ID: 12741794
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of Antileishmanial Activity Employing Conventional and Solid Lipid Nanoparticles of Amphotericin B on Leishmania major In Vitro and In Vivo.
    Soltani S; Mojiri-Forushani H; Soltani S; Kahvaz MS; Foroutan M
    Infect Disord Drug Targets; 2020; 20(6):822-827. PubMed ID: 31613731
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Physicochemical characterization of molecular assemblies of miltefosine and amphotericin B.
    Ménez C; Legrand P; Rosilio V; Lesieur S; Barratt G
    Mol Pharm; 2007; 4(2):281-8. PubMed ID: 17397240
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Antileishmanial activity, pharmacokinetics and tissue distribution studies of mannose-grafted amphotericin B lipid nanospheres.
    Veerareddy PR; Vobalaboina V; Ali N
    J Drug Target; 2009 Feb; 17(2):140-7. PubMed ID: 19089691
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development, Characterization, and In Vitro Biological Performance of Amphotericin B and Terbinafine Microemulsions Against Leishmania major.
    Baharvandi Z; Salimi A; Arjmand R; Jelowdar A; Rafiei A
    Curr Microbiol; 2022 Nov; 79(12):386. PubMed ID: 36329207
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of polyion complex micelles for encapsulating and delivering amphotericin B.
    Wang CH; Wang WT; Hsiue GH
    Biomaterials; 2009 Jul; 30(19):3352-8. PubMed ID: 19299011
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High purity amphotericin B.
    Cleary JD; Chapman SW; Swiatlo E; Kramer R
    J Antimicrob Chemother; 2007 Dec; 60(6):1331-40. PubMed ID: 17921178
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exploring the Role of Nanoparticles in Amphotericin B Delivery.
    Zaioncz S; Khalil NM; Mainardes RM
    Curr Pharm Des; 2017; 23(3):509-521. PubMed ID: 27799043
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synergistic enhancement of parasiticidal activity of amphotericin B using copaiba oil in nanoemulsified carrier for oral delivery: an approach for non-toxic chemotherapy.
    Gupta PK; Jaiswal AK; Asthana S; Teja B V; Shukla P; Shukla M; Sagar N; Dube A; Rath SK; Mishra PR
    Br J Pharmacol; 2015 Jul; 172(14):3596-610. PubMed ID: 25825339
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Decrease in Fungizone toxicity induced by the use of Lipofundin as a dilutent: an in vitro study.
    de Araújo IB; Damasceno BP; de Medeiros TM; Soares LA; do Egito ES
    Curr Drug Deliv; 2005 Apr; 2(2):199-205. PubMed ID: 16305421
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.