These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 23234235)

  • 81. Evaluation of Safety and Antileishmanial Efficacy of Amine Functionalized Carbon-Based Composite Nanoparticle Appended With Amphotericin B: An
    Gedda MR; Madhukar P; Vishwakarma AK; Verma V; Kushwaha AK; Yadagiri G; Mudavath SL; Singh OP; Srivastava ON; Sundar S
    Front Chem; 2020; 8():510. PubMed ID: 32719770
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Limitations of current chemotherapy and future of nanoformulation-based AmB delivery for visceral leishmaniasis-An updated review.
    Kumar P; Kumar P; Singh N; Khajuria S; Patel R; Rajana VK; Mandal D; Velayutham R
    Front Bioeng Biotechnol; 2022; 10():1016925. PubMed ID: 36588956
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Evaluation of the relationship of the molecular aggregation state of amphotericin B in medium to its genotoxic potential.
    Egito LC; de Medeiros SR; Medeiros MG; Price JC; Egito ES
    J Pharm Sci; 2004 Jun; 93(6):1557-65. PubMed ID: 15124213
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Improvement of the Solubility Amphotericin B Using Olive Oil Nanoemulsion Coated with Chitosan for More Effective Treatment of Zoonotic Cutaneous Leishmaniasis.
    Taghizadeh E; Khamesipour A; Khoee S; Jaafari MR; Hosseini SA
    Iran J Pharm Res; 2021; 20(4):289-299. PubMed ID: 35194447
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Membrane effects of the polyene antibiotic amphotericin B and of some of its derivatives on lymphocytes.
    Henry-Toulmé N; Sarthou P; Seman M; Bolard J
    Mol Cell Biochem; 1989 Nov 23-Dec 19; 91(1-2):39-44. PubMed ID: 2695832
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Stability studies with amphotericin B and amphotericin B methyl ester.
    Bonner DP; Mechlinski W; Schaffner CP
    J Antibiot (Tokyo); 1975 Feb; 28(2):132-5. PubMed ID: 234414
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Influence of heat shock, drugs, and radiation on karyotype of Leishmania major.
    Seo M; Chun DK; Hong ST; Lee SH
    Korean J Parasitol; 1993 Sep; 31(3):277-83. PubMed ID: 8241087
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Quantitative proteomic analysis of amphotericin B resistance in Leishmania infantum.
    Brotherton MC; Bourassa S; Légaré D; Poirier GG; Droit A; Ouellette M
    Int J Parasitol Drugs Drug Resist; 2014 Aug; 4(2):126-32. PubMed ID: 25057462
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Physico-chemical properties of the heat-induced 'superaggregates' of amphotericin B.
    Gaboriau F; Chéron M; Leroy L; Bolard J
    Biophys Chem; 1997 May; 66(1):1-12. PubMed ID: 17029866
    [TBL] [Abstract][Full Text] [Related]  

  • 90.
    Göttel B; Lucas H; Syrowatka F; Knolle W; Kuntsche J; Heinzelmann J; Viestenz A; Mäder K
    Front Bioeng Biotechnol; 2020; 8():600384. PubMed ID: 33425866
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Activity of Amphotericin B-Loaded Chitosan Nanoparticles against Experimental Cutaneous Leishmaniasis.
    Riezk A; Van Bocxlaer K; Yardley V; Murdan S; Croft SL
    Molecules; 2020 Sep; 25(17):. PubMed ID: 32887341
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Noncovalent Complexation of Amphotericin B with Poly(β-Amino Ester) Derivates for Treatment of
    Yu Y; Peng L; Liao G; Chen Z; Li C
    Polymers (Basel); 2019 Feb; 11(2):. PubMed ID: 30960254
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Polymyxin B containing polyion complex (PIC) nanoparticles: Improving the antimicrobial activity by tailoring the degree of polymerisation of the inert component.
    Insua I; Zizmare L; Peacock AFA; Krachler AM; Fernandez-Trillo F
    Sci Rep; 2017 Aug; 7(1):9396. PubMed ID: 28839223
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Preparation and antimicrobial evaluation of polyion complex (PIC) nanoparticles loaded with polymyxin B.
    Insua I; Majok S; Peacock AF; Krachler AM; Fernandez-Trillo F
    Eur Polym J; 2017 Feb; 87():478-486. PubMed ID: 28280277
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The antimicrobial activity of free and immobilized poly (diallyldimethylammonium) chloride in nanoparticles of poly (methylmethacrylate).
    Sanches LM; Petri DF; de Melo Carrasco LD; Carmona-Ribeiro AM
    J Nanobiotechnology; 2015 Sep; 13():58. PubMed ID: 26404400
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Noncovalent complexation of amphotericin-B with Poly(α-glutamic acid).
    Mohamed-Ahmed AH; Les KA; Seifert K; Croft SL; Brocchini S
    Mol Pharm; 2013 Mar; 10(3):940-50. PubMed ID: 23234235
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Antileishmanial activity, uptake, and biodistribution of an amphotericin B and poly(α-Glutamic Acid) complex.
    Mohamed-Ahmed AH; Seifert K; Yardley V; Burrell-Saward H; Brocchini S; Croft SL
    Antimicrob Agents Chemother; 2013 Oct; 57(10):4608-14. PubMed ID: 23796924
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Self-assembled amphotericin B-loaded polyglutamic acid nanoparticles: preparation, characterization and in vitro potential against Candida albicans.
    Zia Q; Khan AA; Swaleha Z; Owais M
    Int J Nanomedicine; 2015; 10():1769-90. PubMed ID: 25784804
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Covalent functionalized self-assembled lipo-polymerosome bearing amphotericin B for better management of leishmaniasis and its toxicity evaluation.
    Gupta PK; Jaiswal AK; Kumar V; Verma A; Dwivedi P; Dube A; Mishra PR
    Mol Pharm; 2014 Mar; 11(3):951-63. PubMed ID: 24495144
    [TBL] [Abstract][Full Text] [Related]  

  • 100.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.