BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 23234240)

  • 61. Glucose induction pathway regulates meiosis in Saccharomyces cerevisiae in part by controlling turnover of Ime2p meiotic kinase.
    Gray M; Piccirillo S; Purnapatre K; Schneider BL; Honigberg SM
    FEMS Yeast Res; 2008 Aug; 8(5):676-84. PubMed ID: 18616605
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression.
    Reifenberger E; Boles E; Ciriacy M
    Eur J Biochem; 1997 Apr; 245(2):324-33. PubMed ID: 9151960
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The C-terminal domain of Snf3p mediates glucose-responsive signal transduction in Saccharomyces cerevisiae.
    Vagnoli P; Coons DM; Bisson LF
    FEMS Microbiol Lett; 1998 Mar; 160(1):31-6. PubMed ID: 9495009
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Analysing and meta-analysing time-series data of microbial growth and gene expression from plate readers.
    Montaño-Gutierrez LF; Moreno NM; Farquhar IL; Huo Y; Bandiera L; Swain PS
    PLoS Comput Biol; 2022 May; 18(5):e1010138. PubMed ID: 35617352
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Hyperosmotic stress represses the transcription of HXT2 and HXT4 genes in Saccharomyces cerevisiae.
    Türkel S
    Folia Microbiol (Praha); 1999; 44(4):372-6. PubMed ID: 10983231
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Two glucose sensing/signaling pathways stimulate glucose-induced inactivation of maltose permease in Saccharomyces.
    Jiang H; Medintz I; Michels CA
    Mol Biol Cell; 1997 Jul; 8(7):1293-304. PubMed ID: 9243508
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Transcriptome analysis of a respiratory Saccharomyces cerevisiae strain suggests the expression of its phenotype is glucose insensitive and predominantly controlled by Hap4, Cat8 and Mig1.
    Bonander N; Ferndahl C; Mostad P; Wilks MD; Chang C; Showe L; Gustafsson L; Larsson C; Bill RM
    BMC Genomics; 2008 Jul; 9():365. PubMed ID: 18671860
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Expansion of hexose transporter genes was associated with the evolution of aerobic fermentation in yeasts.
    Lin Z; Li WH
    Mol Biol Evol; 2011 Jan; 28(1):131-42. PubMed ID: 20660490
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Conditions with high intracellular glucose inhibit sensing through glucose sensor Snf3 in Saccharomyces cerevisiae.
    Karhumaa K; Wu B; Kielland-Brandt MC
    J Cell Biochem; 2010 Jul; 110(4):920-5. PubMed ID: 20564191
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Increased xylose affinity of Hxt2 through gene shuffling of hexose transporters in Saccharomyces cerevisiae.
    Nijland JG; Shin HY; de Waal PP; Klaassen P; Driessen AJM
    J Appl Microbiol; 2018 Feb; 124(2):503-510. PubMed ID: 29240974
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Amino acid residues in Std1 protein required for induction of SUC2 transcription are also required for suppression of TBPDelta57 growth defect in Saccharomyces cerevisiae.
    Zhang X; Shen W; Schmidt MC
    Gene; 1998 Jul; 215(1):131-41. PubMed ID: 9666103
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters.
    Gonçalves DL; Matsushika A; de Sales BB; Goshima T; Bon EP; Stambuk BU
    Enzyme Microb Technol; 2014 Sep; 63():13-20. PubMed ID: 25039054
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A quantitative model of glucose signaling in yeast reveals an incoherent feed forward loop leading to a specific, transient pulse of transcription.
    Kuttykrishnan S; Sabina J; Langton LL; Johnston M; Brent MR
    Proc Natl Acad Sci U S A; 2010 Sep; 107(38):16743-8. PubMed ID: 20810924
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Isolation and characterization of the LGT1 gene encoding a low-affinity glucose transporter from Torulaspora delbrueckii.
    Alves-Araújo C; Hernandez-Lopez MJ; Prieto JA; Randez-Gil F; Sousa MJ
    Yeast; 2005 Feb; 22(3):165-75. PubMed ID: 15704215
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Combinatorial control of gene expression by the three yeast repressors Mig1, Mig2 and Mig3.
    Westholm JO; Nordberg N; Murén E; Ameur A; Komorowski J; Ronne H
    BMC Genomics; 2008 Dec; 9():601. PubMed ID: 19087243
    [TBL] [Abstract][Full Text] [Related]  

  • 76. How do yeast cells sense glucose?
    Kruckeberg AL; Walsh MC; Van Dam K
    Bioessays; 1998 Dec; 20(12):972-6. PubMed ID: 10048296
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Null mutations in the SNF3 gene of Saccharomyces cerevisiae cause a different phenotype than do previously isolated missense mutations.
    Neigeborn L; Schwartzberg P; Reid R; Carlson M
    Mol Cell Biol; 1986 Nov; 6(11):3569-74. PubMed ID: 3540596
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The mutation DGT1-1 decreases glucose transport and alleviates carbon catabolite repression in Saccharomyces cerevisiae.
    Gamo FJ; Lafuente MJ; Gancedo C
    J Bacteriol; 1994 Dec; 176(24):7423-9. PubMed ID: 8002563
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The glucose sensor-like protein Hxs1 is a high-affinity glucose transporter and required for virulence in Cryptococcus neoformans.
    Liu TB; Wang Y; Baker GM; Fahmy H; Jiang L; Xue C
    PLoS One; 2013; 8(5):e64239. PubMed ID: 23691177
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The yeast SNF3 gene encodes a glucose transporter homologous to the mammalian protein.
    Celenza JL; Marshall-Carlson L; Carlson M
    Proc Natl Acad Sci U S A; 1988 Apr; 85(7):2130-4. PubMed ID: 3281163
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.