These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 23234240)

  • 101. A glucose response element from the S. cerevisiae hexose transporter HXT1 gene is sensitive to glucose in human fibroblasts.
    Ferrer-Martínez A; Riera A; Jiménez-Chillarón JC; Herrero P; Moreno F; Gómez-Foix AM
    J Mol Biol; 2004 May; 338(4):657-67. PubMed ID: 15099735
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Expression of the HXT1 low affinity glucose transporter requires the coordinated activities of the HOG and glucose signalling pathways.
    Tomás-Cobos L; Casadomé L; Mas G; Sanz P; Posas F
    J Biol Chem; 2004 May; 279(21):22010-9. PubMed ID: 15014083
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Multiple roles for the cytoplasmic C-terminal domains of the yeast cell surface receptors Rgt2 and Snf3 in glucose sensing and signaling.
    Kim JH; Mailloux L; Bloor D; Tae H; Nguyen H; McDowell M; Padilla J; DeWaard A
    Sci Rep; 2024 Feb; 14(1):4055. PubMed ID: 38374219
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Analyses of DNA double-strand break repair pathways in tandem arrays of HXT genes of Saccharomyces cerevisiae.
    Choi JH; Lim YS; Kim MK; Bae SH
    J Microbiol; 2020 Nov; 58(11):957-966. PubMed ID: 33125670
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Hxt-carrier-mediated glucose efflux upon exposure of Saccharomyces cerevisiae to excess maltose.
    Jansen ML; De Winde JH; Pronk JT
    Appl Environ Microbiol; 2002 Sep; 68(9):4259-65. PubMed ID: 12200274
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Endocytosis and vacuolar degradation of the yeast cell surface glucose sensors Rgt2 and Snf3.
    Roy A; Kim JH
    J Biol Chem; 2014 Mar; 289(10):7247-7256. PubMed ID: 24451370
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Trinucleotide insertions, deletions, and point mutations in glucose transporters confer K+ uptake in Saccharomyces cerevisiae.
    Liang H; Ko CH; Herman T; Gaber RF
    Mol Cell Biol; 1998 Feb; 18(2):926-35. PubMed ID: 9447989
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Local Anesthetics and Antipsychotic Phenothiazines Interact Nonspecifically with Membranes and Inhibit Hexose Transporters in Yeast.
    Uesono Y; Toh-e A; Kikuchi Y; Araki T; Hachiya T; Watanabe CK; Noguchi K; Terashima I
    Genetics; 2016 Mar; 202(3):997-1012. PubMed ID: 26757771
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Catabolite repression of Aox in Pichia pastoris is dependent on hexose transporter PpHxt1 and pexophagy.
    Zhang P; Zhang W; Zhou X; Bai P; Cregg JM; Zhang Y
    Appl Environ Microbiol; 2010 Sep; 76(18):6108-18. PubMed ID: 20656869
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Transcriptomic profiling of the Saccharomyces cerevisiae response to quinine reveals a glucose limitation response attributable to drug-induced inhibition of glucose uptake.
    dos Santos SC; Tenreiro S; Palma M; Becker J; Sá-Correia I
    Antimicrob Agents Chemother; 2009 Dec; 53(12):5213-23. PubMed ID: 19805573
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae.
    Busti S; Coccetti P; Alberghina L; Vanoni M
    Sensors (Basel); 2010; 10(6):6195-240. PubMed ID: 22219709
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Computational analysis of GAL pathway pinpoints mechanisms underlying natural variation.
    Hong J; Palme J; Hua B; Springer M
    PLoS Comput Biol; 2021 Sep; 17(9):e1008691. PubMed ID: 34570755
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Regulation of conditional gene expression by coupled transcription repression and RNA degradation.
    Lavoie M; Ge D; Abou Elela S
    Nucleic Acids Res; 2012 Jan; 40(2):871-83. PubMed ID: 21933814
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Feedback regulation of glucose transporter gene transcription in Kluyveromyces lactis by glucose uptake.
    Milkowski C; Krampe S; Weirich J; Hasse V; Boles E; Breunig KD
    J Bacteriol; 2001 Sep; 183(18):5223-9. PubMed ID: 11514503
    [TBL] [Abstract][Full Text] [Related]  

  • 115. The glucose signaling network in yeast.
    Kim JH; Roy A; Jouandot D; Cho KH
    Biochim Biophys Acta; 2013 Nov; 1830(11):5204-10. PubMed ID: 23911748
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Reciprocal sign epistasis between frequently experimentally evolved adaptive mutations causes a rugged fitness landscape.
    Kvitek DJ; Sherlock G
    PLoS Genet; 2011 Apr; 7(4):e1002056. PubMed ID: 21552329
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Multiple nutrient transporters enable cells to mitigate a rate-affinity tradeoff.
    Montaño-Gutierrez LF; Correia K; Swain PS
    PLoS Comput Biol; 2022 Apr; 18(4):e1010060. PubMed ID: 35468136
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Casein kinases are required for the stability of the glucose-sensing receptor Rgt2 in yeast.
    Kim JH; Bloor D; Rodriguez R; Mohler E; Mailloux L; Melton S; Jung D
    Sci Rep; 2022 Jan; 12(1):1598. PubMed ID: 35102180
    [TBL] [Abstract][Full Text] [Related]  

  • 119. FSY1, a novel gene encoding a specific fructose/H(+) symporter in the type strain of Saccharomyces carlsbergensis.
    Gonçalves P; Rodrigues de Sousa H; Spencer-Martins I
    J Bacteriol; 2000 Oct; 182(19):5628-30. PubMed ID: 10986274
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Identification of Genes in
    Bae NS; Seberg AP; Carroll LP; Swanson MJ
    G3 (Bethesda); 2017 Apr; 7(4):1061-1084. PubMed ID: 28209762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.