These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 23234458)

  • 21. Open-tubular nanoelectrochromatography (OT-NEC): gel-free separation of single stranded DNAs (ssDNAs) in thermoplastic nanochannels.
    Amarasekara CA; Athapattu US; Rathnayaka C; Choi J; Park S; Soper SA
    Electrophoresis; 2020 Oct; 41(18-19):1627-1640. PubMed ID: 33460211
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ion transport in graphene nanofluidic channels.
    Xie Q; Xin F; Park HG; Duan C
    Nanoscale; 2016 Dec; 8(47):19527-19535. PubMed ID: 27878192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Entropic cages for trapping DNA near a nanopore.
    Liu X; Mihovilovic Skanata M; Stein D
    Nat Commun; 2015 Feb; 6():6222. PubMed ID: 25648853
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication and characterization of nanopore-interfaced nanochannel devices.
    Zhang Y; Reisner W
    Nanotechnology; 2015 Nov; 26(45):455301. PubMed ID: 26472174
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Confinement effects on DNA hybridization in electrokinetic micro- and nanofluidic systems.
    Downs AM; McCallum C; Pennathur S
    Electrophoresis; 2019 Mar; 40(5):792-798. PubMed ID: 30597594
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Mass transport properties and applications of nanochannels].
    Li Z; Wu Z; Xia X
    Se Pu; 2020 Oct; 38(10):1189-1196. PubMed ID: 34213115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluorescence enhancement of single DNA molecules confined in Si/SiO2 nanochannels.
    Westerlund F; Persson F; Kristensen A; Tegenfeldt JO
    Lab Chip; 2010 Aug; 10(16):2049-51. PubMed ID: 20544105
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of all-transparent polymer-based and encapsulated nanofluidic devices using nano-indentation lithography.
    Wu C; Lin TG; Zhan Z; Li Y; Tung SCH; Tang WC; Li WJ
    Microsyst Nanoeng; 2017; 3():16084. PubMed ID: 31057852
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sculpturing wafer-scale nanofluidic devices for DNA single molecule analysis.
    Esmek FM; Bayat P; PĂ©rez-Willard F; Volkenandt T; Blick RH; Fernandez-Cuesta I
    Nanoscale; 2019 Jul; 11(28):13620-13631. PubMed ID: 31290915
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integration of sequential analytical processes into sub-100 nm channels: volumetric sampling, chromatographic separation, and label-free molecule detection.
    Tsuyama Y; Morikawa K; Mawatari K
    Nanoscale; 2021 May; 13(19):8855-8863. PubMed ID: 33949427
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relaxation of stretched DNA in slitlike confinement.
    Balducci A; Hsieh CC; Doyle PS
    Phys Rev Lett; 2007 Dec; 99(23):238102. PubMed ID: 18233415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA confined in nanochannels: hairpin tightening by entropic depletion.
    Odijk T
    J Chem Phys; 2006 Nov; 125(20):204904. PubMed ID: 17144737
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA translocation through short nanofluidic channels under asymmetric pulsed electric field.
    Gupta C; Liao WC; Gallego-Perez D; Castro CE; Lee LJ
    Biomicrofluidics; 2014 Mar; 8(2):024114. PubMed ID: 24803963
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optic imaging of single and two-phase pressure-driven flows in nano-scale channels.
    Wu Q; Ok JT; Sun Y; Retterer ST; Neeves KB; Yin X; Bai B; Ma Y
    Lab Chip; 2013 Mar; 13(6):1165-71. PubMed ID: 23370894
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-throughput, non-equilibrium studies of single biomolecules using glass-made nanofluidic devices.
    Fontana M; Fijen C; Lemay SG; Mathwig K; Hohlbein J
    Lab Chip; 2018 Dec; 19(1):79-86. PubMed ID: 30468446
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering inlet structures to enhance DNA capture into nanochannels in a polymer nanofluidic device produced via nanoimprint lithography.
    Wu J; Choi J; Uba FI; Soper SA; Park S
    Micro Nano Eng; 2023 Dec; 21():. PubMed ID: 38737190
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrodynamics of diamond-shaped gradient nanopillar arrays for effective DNA translocation into nanochannels.
    Wang C; Bruce RL; Duch EA; Patel JV; Smith JT; Astier Y; Wunsch BH; Meshram S; Galan A; Scerbo C; Pereira MA; Wang D; Colgan EG; Lin Q; Stolovitzky G
    ACS Nano; 2015 Feb; 9(2):1206-18. PubMed ID: 25626162
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stretching and compression of DNA by external forces under nanochannel confinement.
    Bleha T; Cifra P
    Soft Matter; 2018 Feb; 14(7):1247-1259. PubMed ID: 29363709
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulating Ion Transport in a Nanochannel with Tandem and Parallel Structures via Concentration Polarization.
    Wu ZQ; Li ZQ; Wang Y; Xia XH
    J Phys Chem Lett; 2020 Jan; 11(2):524-529. PubMed ID: 31825632
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced nanochannel translocation and localization of genomic DNA molecules using three-dimensional nanofunnels.
    Zhou J; Wang Y; Menard LD; Panyukov S; Rubinstein M; Ramsey JM
    Nat Commun; 2017 Oct; 8(1):807. PubMed ID: 28993619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.