BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 23234496)

  • 1. Design and assessment of a microfluidic network system for oxygen transport in engineered tissue.
    Kang TY; Hong JM; Jung JW; Yoo JJ; Cho DW
    Langmuir; 2013 Jan; 29(2):701-9. PubMed ID: 23234496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The realistic prediction of oxygen transport in a tissue-engineered scaffold by introducing time-varying effective diffusion coefficients.
    Kang TY; Kang HW; Hwang CM; Lee SJ; Park J; Yoo JJ; Cho DW
    Acta Biomater; 2011 Sep; 7(9):3345-53. PubMed ID: 21642022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model.
    Chang R; Emami K; Wu H; Sun W
    Biofabrication; 2010 Dec; 2(4):045004. PubMed ID: 21079286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pore architecture on oxygen diffusion in 3D scaffolds for tissue engineering.
    Ahn G; Park JH; Kang T; Lee JW; Kang HW; Cho DW
    J Biomech Eng; 2010 Oct; 132(10):104506. PubMed ID: 20887024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Numerical simulation of chondrocyte growth in 3-D scaffolds].
    Jiang H; Zhou Y; Tan WS
    Sheng Wu Gong Cheng Xue Bao; 2007 Jan; 23(1):171-5. PubMed ID: 17366909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Layer-by-layer micromolding of natural biopolymer scaffolds with intrinsic microfluidic networks.
    He J; Wang Y; Liu Y; Li D; Jin Z
    Biofabrication; 2013 Jun; 5(2):025002. PubMed ID: 23443621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes.
    Leclerc E; Sakai Y; Fujii T
    Biotechnol Prog; 2004; 20(3):750-5. PubMed ID: 15176878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Avidin-biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a three-dimensional interconnected flow-channel network.
    Huang H; Oizumi S; Kojima N; Niino T; Sakai Y
    Biomaterials; 2007 Sep; 28(26):3815-23. PubMed ID: 17544499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of hollow fiber membranes improves nutrient supply in three-dimensional tissue constructs.
    Bettahalli NM; Vicente J; Moroni L; Higuera GA; van Blitterswijk CA; Wessling M; Stamatialis DF
    Acta Biomater; 2011 Sep; 7(9):3312-24. PubMed ID: 21704736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing Bifurcated Channels within an Anisotropic Scaffold for Engineering Vascularized Oriented Tissues.
    Fang Y; Ouyang L; Zhang T; Wang C; Lu B; Sun W
    Adv Healthc Mater; 2020 Dec; 9(24):e2000782. PubMed ID: 32790048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing.
    Melchels FP; Barradas AM; van Blitterswijk CA; de Boer J; Feijen J; Grijpma DW
    Acta Biomater; 2010 Nov; 6(11):4208-17. PubMed ID: 20561602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser sintering fabrication of three-dimensional tissue engineering scaffolds with a flow channel network.
    Niino T; Hamajima D; Montagne K; Oizumi S; Naruke H; Huang H; Sakai Y; Kinoshita H; Fujii T
    Biofabrication; 2011 Sep; 3(3):034104. PubMed ID: 21725146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of tissue scaffolds for time-dependent biotransport criteria - a novel computational procedure.
    Li E; Chang CC; Zhang Z; Li Q
    Comput Methods Biomech Biomed Engin; 2016; 19(11):1210-24. PubMed ID: 26718135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture.
    Mehta G; Mehta K; Sud D; Song JW; Bersano-Begey T; Futai N; Heo YS; Mycek MA; Linderman JJ; Takayama S
    Biomed Microdevices; 2007 Apr; 9(2):123-34. PubMed ID: 17160707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the effective diffusivity of a freeform fabricated scaffold using computational simulation.
    Woo Jung J; Yi HG; Kang TY; Yong WJ; Jin S; Yun WS; Cho DW
    J Biomech Eng; 2013 Aug; 135(8):84501. PubMed ID: 23719774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels.
    Lee W; Lee V; Polio S; Keegan P; Lee JH; Fischer K; Park JK; Yoo SS
    Biotechnol Bioeng; 2010 Apr; 105(6):1178-86. PubMed ID: 19953677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic cell culture chip with multiplexed medium delivery and efficient cell/scaffold loading mechanisms for high-throughput perfusion 3-dimensional cell culture-based assays.
    Huang SB; Wu MH; Wang SS; Lee GB
    Biomed Microdevices; 2011 Jun; 13(3):415-30. PubMed ID: 21234690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study.
    Truscello S; Kerckhofs G; Van Bael S; Pyka G; Schrooten J; Van Oosterwyck H
    Acta Biomater; 2012 Apr; 8(4):1648-58. PubMed ID: 22210520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single- and two-phase flow in microfluidic porous media analogs based on Voronoi tessellation.
    Wu M; Xiao F; Johnson-Paben RM; Retterer ST; Yin X; Neeves KB
    Lab Chip; 2012 Jan; 12(2):253-61. PubMed ID: 22094719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical and experimental quantification of the role of diffusive chemogradients on neuritogenesis within three-dimensional collagen scaffolds.
    Kothapalli CR; Honarmandi P
    Acta Biomater; 2014 Aug; 10(8):3664-74. PubMed ID: 24830550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.