These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 23234827)
1. Fixed or random testlet effects: a comparison of two multilevel testlet models. Chen TA J Appl Meas; 2012; 13(3):231-47. PubMed ID: 23234827 [TBL] [Abstract][Full Text] [Related]
2. Random parameter structure and the testlet model: extension of the Rasch testlet model. Paek I; Yon H; Wilson M; Kang T J Appl Meas; 2009; 10(4):394-407. PubMed ID: 19934527 [TBL] [Abstract][Full Text] [Related]
3. Exploring the Utility of Logistic Mixed Modeling Approaches to Simultaneously Investigate Item and Testlet DIF on Testlet-based Data. Fukuhara H; Paek I J Appl Meas; 2016; 17(1):79-90. PubMed ID: 26784379 [TBL] [Abstract][Full Text] [Related]
4. Polytomous multilevel testlet models for testlet-based assessments with complex sampling designs. Jiao H; Zhang Y Br J Math Stat Psychol; 2015 Feb; 68(1):65-83. PubMed ID: 24571376 [TBL] [Abstract][Full Text] [Related]
5. F-type testlets and the effects of feedback and case-specificity. Baldwin P; Baldwin SG; Haist SA Acad Med; 2011 Oct; 86(10 Suppl):S55-8; quiz S58. PubMed ID: 21955770 [TBL] [Abstract][Full Text] [Related]
6. Incorporating Mobility in Growth Modeling for Multilevel and Longitudinal Item Response Data. Choi IH; Wilson M Multivariate Behav Res; 2016; 51(1):120-37. PubMed ID: 26881961 [TBL] [Abstract][Full Text] [Related]
7. Bayesian methods for the analysis of small sample multilevel data with a complex variance structure. Baldwin SA; Fellingham GW Psychol Methods; 2013 Jun; 18(2):151-64. PubMed ID: 23148476 [TBL] [Abstract][Full Text] [Related]
8. Synthesizing single-case studies: a Monte Carlo examination of a three-level meta-analytic model. Owens CM; Ferron JM Behav Res Methods; 2012 Sep; 44(3):795-805. PubMed ID: 22180105 [TBL] [Abstract][Full Text] [Related]
9. Biases in multilevel analyses caused by cluster-specific fixed-effects imputation. Speidel M; Drechsler J; Sakshaug JW Behav Res Methods; 2018 Oct; 50(5):1824-1840. PubMed ID: 28840562 [TBL] [Abstract][Full Text] [Related]
10. Multidimensional item response theory models for testlet-based doubly bounded data. Liu CW Behav Res Methods; 2024 Sep; 56(6):5309-5353. PubMed ID: 37985636 [TBL] [Abstract][Full Text] [Related]
11. A comparison of three polytomous item response theory models in the context of testlet scoring. Cook KF; Dodd BG; Fitzpatrick SJ J Outcome Meas; 1999; 3(1):1-20. PubMed ID: 10063769 [TBL] [Abstract][Full Text] [Related]
12. Modelling partially cross-classified multilevel data. Luo W; Cappaert KJ; Ning L Br J Math Stat Psychol; 2015 May; 68(2):342-62. PubMed ID: 25773173 [TBL] [Abstract][Full Text] [Related]
13. Computerized adaptive testing for testlet-based innovative items. Kang HA; Han S; Betts J; Muntean W Br J Math Stat Psychol; 2022 Feb; 75(1):136-157. PubMed ID: 34462913 [TBL] [Abstract][Full Text] [Related]
14. A simulation study to assess statistical methods for binary repeated measures data. Masaoud E; Stryhn H Prev Vet Med; 2010 Feb; 93(2-3):81-97. PubMed ID: 20004989 [TBL] [Abstract][Full Text] [Related]
15. Multilevel mixture cure models with random effects. Lai X; Yau KK Biom J; 2009 Jun; 51(3):456-66. PubMed ID: 19588451 [TBL] [Abstract][Full Text] [Related]
16. A note on variance estimation in random effects meta-regression. Sidik K; Jonkman JN J Biopharm Stat; 2005; 15(5):823-38. PubMed ID: 16078388 [TBL] [Abstract][Full Text] [Related]
17. Polytomous Testlet Response Models for Technology-Enhanced Innovative Items: Implications on Model Fit and Trait Inference. Kang HA; Han S; Kim D; Kao SC Educ Psychol Meas; 2022 Aug; 82(4):811-838. PubMed ID: 35754615 [TBL] [Abstract][Full Text] [Related]
18. A Testlet Diagnostic Classification Model with Attribute Hierarchies. Ma W; Wang C; Xiao J Appl Psychol Meas; 2023 May; 47(3):183-199. PubMed ID: 37113526 [TBL] [Abstract][Full Text] [Related]
19. A 2 × 2 taxonomy of multilevel latent contextual models: accuracy-bias trade-offs in full and partial error correction models. Lüdtke O; Marsh HW; Robitzsch A; Trautwein U Psychol Methods; 2011 Dec; 16(4):444-67. PubMed ID: 21787083 [TBL] [Abstract][Full Text] [Related]
20. Type I and Type II error under random-effects misspecification in generalized linear mixed models. Litière S; Alonso A; Molenberghs G Biometrics; 2007 Dec; 63(4):1038-44. PubMed ID: 17425642 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]