These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 23234882)
1. Detection of spin currents by a three-terminal zigzag graphene nanoribbon junction. Zhang L J Phys Condens Matter; 2013 Jan; 25(3):035303. PubMed ID: 23234882 [TBL] [Abstract][Full Text] [Related]
2. Dual-channel current valve in a three terminal zigzag graphene nanoribbon junction. Zhang L J Phys Condens Matter; 2017 Feb; 29(5):055304. PubMed ID: 27941223 [TBL] [Abstract][Full Text] [Related]
3. Thermally driven spin transport through a transverse-biased zigzag-edge graphene nanoribbon. Zhao Z; Zhai X; Jin G J Phys Condens Matter; 2012 Mar; 24(9):095302. PubMed ID: 22316566 [TBL] [Abstract][Full Text] [Related]
4. Strained zigzag graphene nanoribbon devices with vacancies as perfect spin filters. Magno M; Hagelberg F J Mol Model; 2018 Jan; 24(1):35. PubMed ID: 29313152 [TBL] [Abstract][Full Text] [Related]
5. Spin-dependent transport for armchair-edge graphene nanoribbons between ferromagnetic leads. Zhou B; Chen X; Zhou B; Ding KH; Zhou G J Phys Condens Matter; 2011 Apr; 23(13):135304. PubMed ID: 21415476 [TBL] [Abstract][Full Text] [Related]
6. Electrical controllable spin pump based on a zigzag silicene nanoribbon junction. Zhang L; Tong P J Phys Condens Matter; 2017 Dec; 29(49):495303. PubMed ID: 29095145 [TBL] [Abstract][Full Text] [Related]
7. Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Kim WY; Kim KS Nat Nanotechnol; 2008 Jul; 3(7):408-12. PubMed ID: 18654564 [TBL] [Abstract][Full Text] [Related]
8. Electronic transport through zigzag/armchair graphene nanoribbon heterojunctions. Li XF; Wang LL; Chen KQ; Luo Y J Phys Condens Matter; 2012 Mar; 24(9):095801. PubMed ID: 22317831 [TBL] [Abstract][Full Text] [Related]
9. Spin-dependent thermoelectric effects in graphene-based spin valves. Zeng M; Huang W; Liang G Nanoscale; 2013 Jan; 5(1):200-8. PubMed ID: 23151965 [TBL] [Abstract][Full Text] [Related]
10. Electronic structure and transport of a carbon chain between graphene nanoribbon leads. Zhang GP; Fang XW; Yao YX; Wang CZ; Ding ZJ; Ho KM J Phys Condens Matter; 2011 Jan; 23(2):025302. PubMed ID: 21406839 [TBL] [Abstract][Full Text] [Related]
11. Spatial spin flipping and spin switching phenomena on a Y-shaped graphene nanoribbon ferromagnetic junction with Rashba spin orbit coupling and strain. Zhang L; Tong P J Phys Condens Matter; 2021 Jun; 33(33):. PubMed ID: 34107454 [TBL] [Abstract][Full Text] [Related]
12. A bipolar spin-filtering effect in graphene zigzag nanoribbons with spin-orbit coupling. Liu JF; Chan KS; Wang J Nanotechnology; 2012 Mar; 23(9):095201. PubMed ID: 22322097 [TBL] [Abstract][Full Text] [Related]
13. Electronic transport between quantum Hall states and quantum anomalous Hall states in a graphene nanoribbon based heterojunction. Xu XR; Cheng SG J Phys Condens Matter; 2013 Feb; 25(7):075304. PubMed ID: 23343589 [TBL] [Abstract][Full Text] [Related]
14. Graphene nanoring as a tunable source of polarized electrons. Munárriz J; Domínguez-Adame F; Orellana PA; Malyshev AV Nanotechnology; 2012 May; 23(20):205202. PubMed ID: 22543955 [TBL] [Abstract][Full Text] [Related]
15. Magnetic response of zigzag nanoribbons under electric fields. Culchac FJ; Capaz RB; Costa AT; Latgé A J Phys Condens Matter; 2014 May; 26(21):216002. PubMed ID: 24806106 [TBL] [Abstract][Full Text] [Related]
16. Thermopower and conductance for a graphene p-n junction. Lv SH; Feng SB; Li YX J Phys Condens Matter; 2012 Apr; 24(14):145801. PubMed ID: 22410842 [TBL] [Abstract][Full Text] [Related]
17. Single-parameter charge pump in a zigzag graphene nanoribbon. Gu Y; Yang YH; Wang J; Chan KS J Phys Condens Matter; 2009 Oct; 21(40):405301. PubMed ID: 21832408 [TBL] [Abstract][Full Text] [Related]