These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 23235155)
1. Divergent β-arrestin-dependent signaling events are dependent upon sequences within G-protein-coupled receptor C termini. Pal K; Mathur M; Kumar P; DeFea K J Biol Chem; 2013 Feb; 288(5):3265-74. PubMed ID: 23235155 [TBL] [Abstract][Full Text] [Related]
2. Beta-arrestin-dependent regulation of the cofilin pathway downstream of protease-activated receptor-2. Zoudilova M; Kumar P; Ge L; Wang P; Bokoch GM; DeFea KA J Biol Chem; 2007 Jul; 282(28):20634-46. PubMed ID: 17500066 [TBL] [Abstract][Full Text] [Related]
3. Differential effects of beta-arrestins on the internalization, desensitization and ERK1/2 activation downstream of protease activated receptor-2. Kumar P; Lau CS; Mathur M; Wang P; DeFea KA Am J Physiol Cell Physiol; 2007 Jul; 293(1):C346-57. PubMed ID: 17442737 [TBL] [Abstract][Full Text] [Related]
4. Beta-arrestin mediates desensitization and internalization but does not affect dephosphorylation of the thyrotropin-releasing hormone receptor. Jones BW; Hinkle PM J Biol Chem; 2005 Nov; 280(46):38346-54. PubMed ID: 16183993 [TBL] [Abstract][Full Text] [Related]
5. A phosphorylation cluster of five serine and threonine residues in the C-terminus of the follicle-stimulating hormone receptor is important for desensitization but not for beta-arrestin-mediated ERK activation. Kara E; Crépieux P; Gauthier C; Martinat N; Piketty V; Guillou F; Reiter E Mol Endocrinol; 2006 Nov; 20(11):3014-26. PubMed ID: 16887887 [TBL] [Abstract][Full Text] [Related]
6. Heterologous regulation of trafficking and signaling of G protein-coupled receptors: beta-arrestin-dependent interactions between neurokinin receptors. Schmidlin F; Déry O; Bunnett NW; Grady EF Proc Natl Acad Sci U S A; 2002 Mar; 99(5):3324-9. PubMed ID: 11880656 [TBL] [Abstract][Full Text] [Related]
7. Protease-activated receptor-2 simultaneously directs beta-arrestin-1-dependent inhibition and Galphaq-dependent activation of phosphatidylinositol 3-kinase. Wang P; DeFea KA Biochemistry; 2006 Aug; 45(31):9374-85. PubMed ID: 16878972 [TBL] [Abstract][Full Text] [Related]
8. The third intracellular loop and carboxyl tail of neurokinin 1 and 3 receptors determine interactions with beta-arrestins. Schmidlin F; Roosterman D; Bunnett NW Am J Physiol Cell Physiol; 2003 Oct; 285(4):C945-58. PubMed ID: 12958028 [TBL] [Abstract][Full Text] [Related]
9. A beta-arrestin-dependent scaffold is associated with prolonged MAPK activation in pseudopodia during protease-activated receptor-2-induced chemotaxis. Ge L; Ly Y; Hollenberg M; DeFea K J Biol Chem; 2003 Sep; 278(36):34418-26. PubMed ID: 12821670 [TBL] [Abstract][Full Text] [Related]
10. ERK5 activation by Gq-coupled muscarinic receptors is independent of receptor internalization and β-arrestin recruitment. Sánchez-Fernández G; Cabezudo S; García-Hoz C; Tobin AB; Mayor F; Ribas C PLoS One; 2013; 8(12):e84174. PubMed ID: 24358341 [TBL] [Abstract][Full Text] [Related]
11. Neutrophil elastase acts as a biased agonist for proteinase-activated receptor-2 (PAR2). Ramachandran R; Mihara K; Chung H; Renaux B; Lau CS; Muruve DA; DeFea KA; Bouvier M; Hollenberg MD J Biol Chem; 2011 Jul; 286(28):24638-48. PubMed ID: 21576245 [TBL] [Abstract][Full Text] [Related]
12. The glucagon-like peptide-2 receptor C terminus modulates beta-arrestin-2 association but is dispensable for ligand-induced desensitization, endocytosis, and G-protein-dependent effector activation. Estall JL; Koehler JA; Yusta B; Drucker DJ J Biol Chem; 2005 Jun; 280(23):22124-34. PubMed ID: 15817468 [TBL] [Abstract][Full Text] [Related]
13. Histamine H Michinaga S; Nagata A; Ogami R; Ogawa Y; Hishinuma S Int J Mol Sci; 2024 Mar; 25(6):. PubMed ID: 38542369 [TBL] [Abstract][Full Text] [Related]
14. Endothelin-converting enzyme 1 and β-arrestins exert spatiotemporal control of substance P-induced inflammatory signals. Jensen DD; Halls ML; Murphy JE; Canals M; Cattaruzza F; Poole DP; Lieu T; Koon HW; Pothoulakis C; Bunnett NW J Biol Chem; 2014 Jul; 289(29):20283-94. PubMed ID: 24898255 [TBL] [Abstract][Full Text] [Related]
15. Constitutive ERK1/2 activation by a chimeric neurokinin 1 receptor-beta-arrestin1 fusion protein. Probing the composition and function of the G protein-coupled receptor "signalsome". Jafri F; El-Shewy HM; Lee MH; Kelly M; Luttrell DK; Luttrell LM J Biol Chem; 2006 Jul; 281(28):19346-57. PubMed ID: 16670094 [TBL] [Abstract][Full Text] [Related]
16. beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. Shenoy SK; Drake MT; Nelson CD; Houtz DA; Xiao K; Madabushi S; Reiter E; Premont RT; Lichtarge O; Lefkowitz RJ J Biol Chem; 2006 Jan; 281(2):1261-73. PubMed ID: 16280323 [TBL] [Abstract][Full Text] [Related]
17. Functional desensitization of the extracellular calcium-sensing receptor is regulated via distinct mechanisms: role of G protein-coupled receptor kinases, protein kinase C and beta-arrestins. Lorenz S; Frenzel R; Paschke R; Breitwieser GE; Miedlich SU Endocrinology; 2007 May; 148(5):2398-404. PubMed ID: 17255208 [TBL] [Abstract][Full Text] [Related]
18. Association of beta-Arrestin 1 with the type 1A angiotensin II receptor involves phosphorylation of the receptor carboxyl terminus and correlates with receptor internalization. Qian H; Pipolo L; Thomas WG Mol Endocrinol; 2001 Oct; 15(10):1706-19. PubMed ID: 11579203 [TBL] [Abstract][Full Text] [Related]
19. Recycling and resensitization of the neurokinin 1 receptor. Influence of agonist concentration and Rab GTPases. Roosterman D; Cottrell GS; Schmidlin F; Steinhoff M; Bunnett NW J Biol Chem; 2004 Jul; 279(29):30670-9. PubMed ID: 15128739 [TBL] [Abstract][Full Text] [Related]