BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 23236001)

  • 1. A simple model of mechanotransduction in primate glabrous skin.
    Dong Y; Mihalas S; Kim SS; Yoshioka T; Bensmaia S; Niebur E
    J Neurophysiol; 2013 Mar; 109(5):1350-9. PubMed ID: 23236001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-course of vibratory adaptation and recovery in cutaneous mechanoreceptive afferents.
    Leung YY; Bensmaïa SJ; Hsiao SS; Johnson KO
    J Neurophysiol; 2005 Nov; 94(5):3037-45. PubMed ID: 16222071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibratory adaptation of cutaneous mechanoreceptive afferents.
    Bensmaïa SJ; Leung YY; Hsiao SS; Johnson KO
    J Neurophysiol; 2005 Nov; 94(5):3023-36. PubMed ID: 16014802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Population estimates for responses of cutaneous mechanoreceptors to a vertically indenting probe on the glabrous skin of monkeys.
    Cohen RH; Vierck CJ
    Exp Brain Res; 1993; 94(1):105-19. PubMed ID: 8335066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of motion on the skin. III. Mechanisms used by rapidly adapting cutaneous mechanoreceptors in the primate hand for spatiotemporal resolution and two-point discrimination.
    Gardner EP; Palmer CI
    J Neurophysiol; 1990 Apr; 63(4):841-59. PubMed ID: 2341881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force sensor in simulated skin and neural model mimic tactile SAI afferent spiking response to ramp and hold stimuli.
    Kim EK; Wellnitz SA; Bourdon SM; Lumpkin EA; Gerling GJ
    J Neuroeng Rehabil; 2012 Jul; 9():45. PubMed ID: 22824523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the timing of spikes evoked by tactile stimulation of the hand.
    Kim SS; Sripati AP; Bensmaia SJ
    J Neurophysiol; 2010 Sep; 104(3):1484-96. PubMed ID: 20610784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Information about contact force and surface texture is mixed in the firing rates of cutaneous afferent neurons.
    Liu M; Batista A; Bensmaia S; Weber DJ
    J Neurophysiol; 2021 Feb; 125(2):496-508. PubMed ID: 33326349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensory signals in neural populations underlying tactile perception and manipulation.
    Goodwin AW; Wheat HE
    Annu Rev Neurosci; 2004; 27():53-77. PubMed ID: 15217326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal delineation of single C-tactile and C-nociceptive afferents in humans by latency slowing.
    Watkins RH; Wessberg J; Backlund Wasling H; Dunham JP; Olausson H; Johnson RD; Ackerley R
    J Neurophysiol; 2017 Apr; 117(4):1608-1614. PubMed ID: 28123010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of motion on the skin. I. Receptive fields and temporal frequency coding by cutaneous mechanoreceptors of OPTACON pulses delivered to the hand.
    Gardner EP; Palmer CI
    J Neurophysiol; 1989 Dec; 62(6):1410-36. PubMed ID: 2600632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulating tactile signals from the whole hand with millisecond precision.
    Saal HP; Delhaye BP; Rayhaun BC; Bensmaia SJ
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):E5693-E5702. PubMed ID: 28652360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does afferent heterogeneity matter in conveying tactile feedback through peripheral nerve stimulation?
    Kim SS; Mihalas S; Russell A; Dong Y; Bensmaia SJ
    IEEE Trans Neural Syst Rehabil Eng; 2011 Oct; 19(5):514-20. PubMed ID: 21712163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paradoxes in tactile adaptation. Focus on "vibratory adaptation in cutaneous mechanoreceptive afferents" and "time-course of vibratory adaptation and recovery in cutaneous mechanoreceptive afferents".
    Goodwin AW
    J Neurophysiol; 2005 Nov; 94(5):2995-6. PubMed ID: 16222069
    [No Abstract]   [Full Text] [Related]  

  • 15. A continuum mechanical model of mechanoreceptive afferent responses to indented spatial patterns.
    Sripati AP; Bensmaia SJ; Johnson KO
    J Neurophysiol; 2006 Jun; 95(6):3852-64. PubMed ID: 16481453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relations between stimulus force, skin displacement, and discharge characteristics of slowly adapting type I cutaneous mechanoreceptors in glabrous skin of squirrel monkey hand.
    Pubols BH; Benkich ME
    Somatosens Res; 1986; 4(2):111-25. PubMed ID: 3809832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution imaging of skin deformation shows that afferents from human fingertips signal slip onset.
    Delhaye BP; Jarocka E; Barrea A; Thonnard JL; Edin B; Lefèvre P
    Elife; 2021 Apr; 10():. PubMed ID: 33884951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for sparse C-tactile afferent innervation of glabrous human hand skin.
    Watkins RH; Dione M; Ackerley R; Backlund Wasling H; Wessberg J; Löken LS
    J Neurophysiol; 2021 Jan; 125(1):232-237. PubMed ID: 33296618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplexed Population Coding of Stimulus Properties by Leech Mechanosensory Cells.
    Pirschel F; Kretzberg J
    J Neurosci; 2016 Mar; 36(13):3636-47. PubMed ID: 27030751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transitional properties of afferents reinnervating mechanoreceptors in the human glabrous skin.
    Mackel R; Brink EE; Wittkowsky G
    Brain Res; 1983 Oct; 276(2):339-43. PubMed ID: 6627016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.