These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 23236356)

  • 21. Analysis of cytochrome b(5) reductase-mediated metabolism in the phytopathogenic fungus Zymoseptoria tritici reveals novel functionalities implicated in virulence.
    Derbyshire MC; Michaelson L; Parker J; Kelly S; Thacker U; Powers SJ; Bailey A; Hammond-Kosack K; Courbot M; Rudd J
    Fungal Genet Biol; 2015 Sep; 82():69-84. PubMed ID: 26074495
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Previous bottlenecks and future solutions to dissecting the Zymoseptoria tritici-wheat host-pathogen interaction.
    Rudd JJ
    Fungal Genet Biol; 2015 Jun; 79():24-8. PubMed ID: 26092786
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cell biology of Zymoseptoria tritici: Pathogen cell organization and wheat infection.
    Steinberg G
    Fungal Genet Biol; 2015 Jun; 79():17-23. PubMed ID: 26092785
    [TBL] [Abstract][Full Text] [Related]  

  • 24. BOTH MAT1-1 AND MAT1-2 MATING TYPES OF MYCOSPHAERELLA GRAMINICOLA OCCUR AT EQUAL FREQUENCIES IN ALGERIA.
    Allioui N; Siah A; Brinis L; Reignault P; Halama P
    Commun Agric Appl Biol Sci; 2014; 79(3):469-72. PubMed ID: 26080482
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ASCORBIC ACID CONTROLS MYCOSPHAERELLA GRAMINICOLA IN BREAD AND DURUM WHEAT THROUGH DIRECT EFFECT ON THE PATHOGEN AND INDIRECT ACTION VIA PLANT DEFENCE.
    Somai-Jemmali L; Magnin-Robert M; Randoux B; Siah A; Tisserant B; Halama P; Reignault P; Hamada W
    Commun Agric Appl Biol Sci; 2015; 80(3):477-90. PubMed ID: 27141744
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptional reprogramming of wheat and the hemibiotrophic pathogen Septoria tritici during two phases of the compatible interaction.
    Yang F; Li W; Jørgensen HJ
    PLoS One; 2013; 8(11):e81606. PubMed ID: 24303057
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptional adaptation of Mycosphaerella graminicola to programmed cell death (PCD) of its susceptible wheat host.
    Keon J; Antoniw J; Carzaniga R; Deller S; Ward JL; Baker JM; Beale MH; Hammond-Kosack K; Rudd JJ
    Mol Plant Microbe Interact; 2007 Feb; 20(2):178-93. PubMed ID: 17313169
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Whole-genome and chromosome evolution associated with host adaptation and speciation of the wheat pathogen Mycosphaerella graminicola.
    Stukenbrock EH; Jørgensen FG; Zala M; Hansen TT; McDonald BA; Schierup MH
    PLoS Genet; 2010 Dec; 6(12):e1001189. PubMed ID: 21203495
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mating type idiomorphs from a French population of the wheat pathogen Mycosphaerella graminicola: widespread equal distribution and low but distinct levels of molecular polymorphism.
    Siah A; Tisserant B; El Chartouni L; Duyme F; Deweer C; Roisin-Fichter C; Sanssené J; Durand R; Reignault P; Halama P
    Fungal Biol; 2010; 114(11-12):980-90. PubMed ID: 21036342
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gene encoding a c-type cyclin in Mycosphaerella graminicola is involved in aerial mycelium formation, filamentous growth, hyphal swelling, melanin biosynthesis, stress response, and pathogenicity.
    Choi YE; Goodwin SB
    Mol Plant Microbe Interact; 2011 Apr; 24(4):469-77. PubMed ID: 21171890
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative transcriptomic analyses of Zymoseptoria tritici strains show complex lifestyle transitions and intraspecific variability in transcription profiles.
    Palma-Guerrero J; Torriani SF; Zala M; Carter D; Courbot M; Rudd JJ; McDonald BA; Croll D
    Mol Plant Pathol; 2016 Aug; 17(6):845-59. PubMed ID: 26610174
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The ABC transporter MgAtr4 is a virulence factor of Mycosphaerella graminicola that affects colonization of substomatal cavities in wheat leaves.
    Stergiopoulos I; Zwiers LH; De Waard MA
    Mol Plant Microbe Interact; 2003 Aug; 16(8):689-98. PubMed ID: 12906113
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Real-time PCR to study the effect of timing and persistence of fungicide application and wheat varietal resistance on Mycosphaerella graminicola and its sterol 14α-demethylation-inhibitor-resistant genotypes.
    Selim S; Roisin-Fichter C; Andry JB; Bogdanow B; Sambou R
    Pest Manag Sci; 2014 Jan; 70(1):60-9. PubMed ID: 23457056
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Evolution of Orphan Regions in Genomes of a Fungal Pathogen of Wheat.
    Plissonneau C; Stürchler A; Croll D
    mBio; 2016 Oct; 7(5):. PubMed ID: 27795389
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapidly Evolving Genes Are Key Players in Host Specialization and Virulence of the Fungal Wheat Pathogen Zymoseptoria tritici (Mycosphaerella graminicola).
    Poppe S; Dorsheimer L; Happel P; Stukenbrock EH
    PLoS Pathog; 2015 Jul; 11(7):e1005055. PubMed ID: 26225424
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A group of expressed cDNA sequences from the wheat fungal leaf blotch pathogen, Mycosphaerella graminicola (Septoria tritici).
    Keon J; Bailey A; Hargreaves J
    Fungal Genet Biol; 2000 Mar; 29(2):118-33. PubMed ID: 10919380
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid induction of a protein disulfide isomerase and defense-related genes in wheat in response to the hemibiotrophic fungal pathogen Mycosphaerella graminicola.
    Ray S; Anderson JM; Urmeev FI; Goodwin SB
    Plant Mol Biol; 2003 Nov; 53(5):701-14. PubMed ID: 15010608
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Both mating types of the wheat pathogen Mycosphaerella graminicola are present in Morocco.
    Elbekali AY; Ramdani A; Tisserant B; Deweer C; Siah A; Reignault P; Halama P
    Commun Agric Appl Biol Sci; 2010; 75(4):643-7. PubMed ID: 21534472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MAP kinase signalling pathway components and targets conserved between the distantly related plant pathogenic fungi Mycosphaerella graminicola and Magnaporthe grisea.
    Kramer B; Thines E; Foster AJ
    Fungal Genet Biol; 2009 Sep; 46(9):667-81. PubMed ID: 19520179
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression profiling of the wheat pathogen Zymoseptoria tritici reveals genomic patterns of transcription and host-specific regulatory programs.
    Kellner R; Bhattacharyya A; Poppe S; Hsu TY; Brem RB; Stukenbrock EH
    Genome Biol Evol; 2014 May; 6(6):1353-65. PubMed ID: 24920004
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.