These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 23237213)
1. GOMA: functional enrichment analysis tool based on GO modules. Huang Q; Wu LY; Wang Y; Zhang XS Chin J Cancer; 2013 Apr; 32(4):195-204. PubMed ID: 23237213 [TBL] [Abstract][Full Text] [Related]
2. Gene set internal coherence in the context of functional profiling. Montaner D; Minguez P; Al-Shahrour F; Dopazo J BMC Genomics; 2009 Apr; 10():197. PubMed ID: 19397819 [TBL] [Abstract][Full Text] [Related]
3. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. Eden E; Navon R; Steinfeld I; Lipson D; Yakhini Z BMC Bioinformatics; 2009 Feb; 10():48. PubMed ID: 19192299 [TBL] [Abstract][Full Text] [Related]
4. NetGen: a novel network-based probabilistic generative model for gene set functional enrichment analysis. Sun D; Liu Y; Zhang XS; Wu LY BMC Syst Biol; 2017 Sep; 11(Suppl 4):75. PubMed ID: 28950861 [TBL] [Abstract][Full Text] [Related]
6. The Neural/Immune Gene Ontology: clipping the Gene Ontology for neurological and immunological systems. Geifman N; Monsonego A; Rubin E BMC Bioinformatics; 2010 Sep; 11():458. PubMed ID: 20831831 [TBL] [Abstract][Full Text] [Related]
7. SGCP: a spectral self-learning method for clustering genes in co-expression networks. Aghaieabiane N; Koutis I BMC Bioinformatics; 2024 Jul; 25(1):230. PubMed ID: 38956463 [TBL] [Abstract][Full Text] [Related]
8. GO-function: deriving biologically relevant functions from statistically significant functions. Wang J; Zhou X; Zhu J; Gu Y; Zhao W; Zou J; Guo Z Brief Bioinform; 2012 Mar; 13(2):216-27. PubMed ID: 21705405 [TBL] [Abstract][Full Text] [Related]
9. CEA: Combination-based gene set functional enrichment analysis. Sun D; Liu Y; Zhang XS; Wu LY Sci Rep; 2018 Aug; 8(1):13085. PubMed ID: 30166636 [TBL] [Abstract][Full Text] [Related]
10. Comparing gene annotation enrichment tools for functional modeling of agricultural microarray data. van den Berg BH; Thanthiriwatte C; Manda P; Bridges SM BMC Bioinformatics; 2009 Oct; 10 Suppl 11(Suppl 11):S9. PubMed ID: 19811693 [TBL] [Abstract][Full Text] [Related]
11. A Bayesian extension of the hypergeometric test for functional enrichment analysis. Cao J; Zhang S Biometrics; 2014 Mar; 70(1):84-94. PubMed ID: 24320951 [TBL] [Abstract][Full Text] [Related]
12. Using Semantic Similarities and csbl.go for Analyzing Microarray Data. Ovaska K Methods Mol Biol; 2016; 1375():105-16. PubMed ID: 25971911 [TBL] [Abstract][Full Text] [Related]
14. Comparisons of gene coexpression network modules in breast cancer and ovarian cancer. Zhang S BMC Syst Biol; 2018 Apr; 12(Suppl 1):8. PubMed ID: 29671401 [TBL] [Abstract][Full Text] [Related]
15. Co-expression analysis reveals key gene modules and pathway of human coronary heart disease. Tang Y; Ke ZP; Peng YG; Cai PT J Cell Biochem; 2018 Feb; 119(2):2102-2109. PubMed ID: 28857241 [TBL] [Abstract][Full Text] [Related]
16. An effective method for network module extraction from microarray data. Mahanta P; Ahmed HA; Bhattacharyya DK; Kalita JK BMC Bioinformatics; 2012; 13 Suppl 13(Suppl 13):S4. PubMed ID: 23320896 [TBL] [Abstract][Full Text] [Related]
17. How to decide which are the most pertinent overly-represented features during gene set enrichment analysis. Barriot R; Sherman DJ; Dutour I BMC Bioinformatics; 2007 Sep; 8():332. PubMed ID: 17848190 [TBL] [Abstract][Full Text] [Related]