These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 23237467)

  • 21. Visuospatial working memory capacity predicts the organization of acquired explicit motor sequences.
    Bo J; Seidler RD
    J Neurophysiol; 2009 Jun; 101(6):3116-25. PubMed ID: 19357338
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Maintaining structured information: an investigation into functions of parietal and lateral prefrontal cortices.
    Wendelken C; Bunge SA; Carter CS
    Neuropsychologia; 2008 Jan; 46(2):665-78. PubMed ID: 18022652
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prefrontal and parietal contributions to spatial working memory.
    Curtis CE
    Neuroscience; 2006 Apr; 139(1):173-80. PubMed ID: 16326021
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time modulated prefrontal and parietal activity during the maintenance of integrated information as revealed by magnetoencephalography.
    Campo P; Maestú F; Ortiz T; Capilla A; Santiuste M; Fernández A; Amo C
    Cereb Cortex; 2005 Feb; 15(2):123-30. PubMed ID: 15238441
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prefrontal cortex activation supports the emergence of early stone age toolmaking skill.
    Putt SSJ; Wijeakumar S; Spencer JP
    Neuroimage; 2019 Oct; 199():57-69. PubMed ID: 31128246
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preventing interference between different memory tasks.
    Cohen DA; Robertson EM
    Nat Neurosci; 2011 Jun; 14(8):953-5. PubMed ID: 21706019
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural correlates of skill acquisition: decreased cortical activity during a serial interception sequence learning task.
    Gobel EW; Parrish TB; Reber PJ
    Neuroimage; 2011 Oct; 58(4):1150-7. PubMed ID: 21771663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Disruption of the dorsolateral prefrontal cortex facilitates the consolidation of procedural skills.
    Galea JM; Albert NB; Ditye T; Miall RC
    J Cogn Neurosci; 2010 Jun; 22(6):1158-64. PubMed ID: 19413472
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural correlates of motor memory consolidation.
    Shadmehr R; Holcomb HH
    Science; 1997 Aug; 277(5327):821-5. PubMed ID: 9242612
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neural correlates of spatial working memory in humans: a functional magnetic resonance imaging study comparing visual and tactile processes.
    Ricciardi E; Bonino D; Gentili C; Sani L; Pietrini P; Vecchi T
    Neuroscience; 2006 Apr; 139(1):339-49. PubMed ID: 16324793
    [TBL] [Abstract][Full Text] [Related]  

  • 31. EEG activity during the spatial span task in young men: Differences between short-term and working memory.
    Guevara MA; Cruz Paniagua EI; Hernández González M; Sandoval Carrillo IK; Almanza Sepúlveda ML; Hevia Orozco JC; Amezcua Gutiérrez C
    Brain Res; 2018 Mar; 1683():86-94. PubMed ID: 29425909
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neural correlates of learning and working memory in the primate posterior parietal cortex.
    Rawley JB; Constantinidis C
    Neurobiol Learn Mem; 2009 Feb; 91(2):129-38. PubMed ID: 19116173
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cognitive Control Structures in the Imitation Learning of Spatial Sequences and Rhythms-An fMRI Study.
    Sakreida K; Higuchi S; Di Dio C; Ziessler M; Turgeon M; Roberts N; Vogt S
    Cereb Cortex; 2018 Mar; 28(3):907-923. PubMed ID: 28077513
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sequential neural processes of tactile-visual crossmodal working memory.
    Ohara S; Lenz F; Zhou YD
    Neuroscience; 2006 Apr; 139(1):299-309. PubMed ID: 16324794
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Verbal and visuospatial working memory during pregnancy: EEG correlation between the prefrontal and parietal cortices.
    Almanza-Sepúlveda ML; Hernández-González M; Hevia-Orozco JC; Amezcua-Gutiérrez C; Guevara MA
    Neurobiol Learn Mem; 2018 Feb; 148():1-7. PubMed ID: 29277581
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A common prefrontal-parietal network for mnemonic and mathematical recoding strategies within working memory.
    Bor D; Owen AM
    Cereb Cortex; 2007 Apr; 17(4):778-86. PubMed ID: 16707737
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Load response functions in the human spatial working memory circuit during location memory updating.
    Leung HC; Oh H; Ferri J; Yi Y
    Neuroimage; 2007 Mar; 35(1):368-77. PubMed ID: 17239618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The role of the prefrontal and parietal cortex in learning and memory in monkeys].
    Dudkin KN; Chueva IV; Makarov FN
    Ross Fiziol Zh Im I M Sechenova; 2000 Nov; 86(11):1458-70. PubMed ID: 11195213
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The puzzle is complicated: when should working memory be related to implicit sequence learning, and when should it not? (Response to Martini et al.).
    Janacsek K; Nemeth D
    Cortex; 2015 Mar; 64():411-2. PubMed ID: 25239854
    [No Abstract]   [Full Text] [Related]  

  • 40. Medial frontal negativities predict performance improvements during motor sequence but not motor adaptation learning.
    Matsuhashi T; Segalowitz SJ; Murphy TI; Nagano Y; Hirao T; Masaki H
    Psychophysiology; 2021 Jan; 58(1):e13708. PubMed ID: 33111987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.