These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
366 related articles for article (PubMed ID: 23237467)
41. Working Memory and Decision-Making in a Frontoparietal Circuit Model. Murray JD; Jaramillo J; Wang XJ J Neurosci; 2017 Dec; 37(50):12167-12186. PubMed ID: 29114071 [TBL] [Abstract][Full Text] [Related]
42. Advanced spatial knowledge of target location eliminates age-related differences in early sensorimotor learning. Rajeshkumar L; Trewartha KM Exp Brain Res; 2019 Jul; 237(7):1781-1791. PubMed ID: 31049628 [TBL] [Abstract][Full Text] [Related]
43. Developmental differences in prefrontal activation during working memory maintenance and manipulation for different memory loads. Jolles DD; Kleibeuker SW; Rombouts SA; Crone EA Dev Sci; 2011 Jul; 14(4):713-24. PubMed ID: 21676092 [TBL] [Abstract][Full Text] [Related]
44. The neural correlates of human working memory for haptically explored object orientations. Kaas AL; van Mier H; Goebel R Cereb Cortex; 2007 Jul; 17(7):1637-49. PubMed ID: 16966490 [TBL] [Abstract][Full Text] [Related]
45. Neuromodulation of reinforced skill learning reveals the causal function of prefrontal cortex. Dayan E; Herszage J; Laor-Maayany R; Sharon H; Censor N Hum Brain Mapp; 2018 Dec; 39(12):4724-4732. PubMed ID: 30043536 [TBL] [Abstract][Full Text] [Related]
46. Repetitive transcranial magnetic stimulation dissociates working memory manipulation from retention functions in the prefrontal, but not posterior parietal, cortex. Postle BR; Ferrarelli F; Hamidi M; Feredoes E; Massimini M; Peterson M; Alexander A; Tononi G J Cogn Neurosci; 2006 Oct; 18(10):1712-22. PubMed ID: 17014375 [TBL] [Abstract][Full Text] [Related]
47. From sensorimotor learning to memory cells in prefrontal and temporal association cortex: a neurocomputational study of disembodiment. Pulvermüller F; Garagnani M Cortex; 2014 Aug; 57():1-21. PubMed ID: 24769063 [TBL] [Abstract][Full Text] [Related]
48. The Roles of Declarative Knowledge and Working Memory in Explicit Motor Learning and Practice Among Children With Low Motor Abilities. van Abswoude F; van der Kamp J; Steenbergen B Motor Control; 2019 Jan; 23(1):34-51. PubMed ID: 30012053 [TBL] [Abstract][Full Text] [Related]
49. Response-dependent contributions of human primary motor cortex and angular gyrus to manual and perceptual sequence learning. Rosenthal CR; Roche-Kelly EE; Husain M; Kennard C J Neurosci; 2009 Dec; 29(48):15115-25. PubMed ID: 19955363 [TBL] [Abstract][Full Text] [Related]
50. Why should working memory be related to incidentally learned sequence structures? Martini M; Sachse P; Furtner MR; Gaschler R Cortex; 2015 Mar; 64():407-10. PubMed ID: 25113155 [No Abstract] [Full Text] [Related]
51. Minimally dependent activity subspaces for working memory and motor preparation in the lateral prefrontal cortex. Tang C; Herikstad R; Parthasarathy A; Libedinsky C; Yen SC Elife; 2020 Sep; 9():. PubMed ID: 32902383 [TBL] [Abstract][Full Text] [Related]
52. The role of the dorsolateral prefrontal cortex in implicit procedural learning. Pascual-Leone A; Wassermann EM; Grafman J; Hallett M Exp Brain Res; 1996; 107(3):479-85. PubMed ID: 8821387 [TBL] [Abstract][Full Text] [Related]
53. Chronometry of parietal and prefrontal activations in verbal working memory revealed by transcranial magnetic stimulation. Mottaghy FM; Gangitano M; Krause BJ; Pascual-Leone A Neuroimage; 2003 Mar; 18(3):565-75. PubMed ID: 12667834 [TBL] [Abstract][Full Text] [Related]
54. Modality effects in verbal working memory: differential prefrontal and parietal responses to auditory and visual stimuli. Crottaz-Herbette S; Anagnoson RT; Menon V Neuroimage; 2004 Jan; 21(1):340-51. PubMed ID: 14741672 [TBL] [Abstract][Full Text] [Related]
55. Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. Chafee MV; Goldman-Rakic PS J Neurophysiol; 1998 Jun; 79(6):2919-40. PubMed ID: 9636098 [TBL] [Abstract][Full Text] [Related]
56. The when and where of spatial storage in memory-guided saccades. Brignani D; Bortoletto M; Miniussi C; Maioli C Neuroimage; 2010 Oct; 52(4):1611-20. PubMed ID: 20493955 [TBL] [Abstract][Full Text] [Related]
57. Modulating the interference effect on spatial working memory by applying transcranial direct current stimulation over the right dorsolateral prefrontal cortex. Wu YJ; Tseng P; Chang CF; Pai MC; Hsu KS; Lin CC; Juan CH Brain Cogn; 2014 Nov; 91():87-94. PubMed ID: 25265321 [TBL] [Abstract][Full Text] [Related]
58. The time course of changes during motor sequence learning: a whole-brain fMRI study. Toni I; Krams M; Turner R; Passingham RE Neuroimage; 1998 Jul; 8(1):50-61. PubMed ID: 9698575 [TBL] [Abstract][Full Text] [Related]
59. Motor learning in man: a review of functional and clinical studies. Halsband U; Lange RK J Physiol Paris; 2006 Jun; 99(4-6):414-24. PubMed ID: 16730432 [TBL] [Abstract][Full Text] [Related]
60. The prefrontal cortex: response selection or maintenance within working memory? Rowe JB; Toni I; Josephs O; Frackowiak RS; Passingham RE Science; 2000 Jun; 288(5471):1656-60. PubMed ID: 10834847 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]