These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 23237590)

  • 1. Slip flow through colloidal crystals of varying particle diameter.
    Rogers BJ; Wirth MJ
    ACS Nano; 2013 Jan; 7(1):725-31. PubMed ID: 23237590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slip flow in colloidal crystals for ultraefficient chromatography.
    Wei B; Rogers BJ; Wirth MJ
    J Am Chem Soc; 2012 Jul; 134(26):10780-2. PubMed ID: 22708746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of colloidal crystal beads by a drop-breaking technique and their application as bioassays.
    Sun C; Zhao XW; Zhao YJ; Zhu R; Gu ZZ
    Small; 2008 May; 4(5):592-6. PubMed ID: 18431722
    [No Abstract]   [Full Text] [Related]  

  • 4. Molecular-dynamics study of Poiseuille flow in a nanochannel and calculation of energy and momentum accommodation coefficients.
    Prabha SK; Sathian SP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041201. PubMed ID: 22680461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling sub-micron particle slip flow in liquid chromatography.
    Skrdla PJ
    Talanta; 2020 Feb; 208():120400. PubMed ID: 31816711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High coercivity of ordered macroporous FePt films synthesized via colloidal templates.
    Iskandar F; Iwaki T; Toda T; Okuyama K
    Nano Lett; 2005 Jul; 5(7):1525-8. PubMed ID: 16178269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of protein electrophoresis in silica colloidal crystals having brush layers of polyacrylamide.
    Birdsall RE; Koshel BM; Hua Y; Ratnayaka SN; Wirth MJ
    Electrophoresis; 2013 Mar; 34(5):753-60. PubMed ID: 23229163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropically phase-separated biphasic particles.
    Teranishi T
    Small; 2006 May; 2(5):596-8. PubMed ID: 17193093
    [No Abstract]   [Full Text] [Related]  

  • 9. Sealing of submicrometer wells by a shear-driven lipid bilayer.
    Jönsson P; Jonsson MP; Höök F
    Nano Lett; 2010 May; 10(5):1900-6. PubMed ID: 20405904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature dependent rheological property of copper oxide nanoparticles suspension (nanofluid).
    Kulkarni DP; Das DK; Chukwu GA
    J Nanosci Nanotechnol; 2006 Apr; 6(4):1150-4. PubMed ID: 16736780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colloidal assembly route for responsive colloidosomes with tunable permeability.
    Kim JW; Fernandez-Nieves A; Dan N; Utada AS; Marquez M; Weitz DA
    Nano Lett; 2007 Sep; 7(9):2876-80. PubMed ID: 17676811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of tunable nanopore blockade rates to investigate colloidal dispersions.
    Willmott GR; Vogel R; Yu SS; Groenewegen LG; Roberts GS; Kozak D; Anderson W; Trau M
    J Phys Condens Matter; 2010 Nov; 22(45):454116. PubMed ID: 21339603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colloidal crystals of silica-homopolypeptide composite particles.
    Fong B; Turksen S; Russo PS; Stryjewski W
    Langmuir; 2004 Jan; 20(1):266-9. PubMed ID: 15745032
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of temperature on rheological properties of copper oxide nanoparticles dispersed in propylene glycol and water mixture.
    Kulkarni DP; Das DK; Patil SL
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2318-22. PubMed ID: 17663246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights from theory and experiments on slip flow in chromatography.
    Wu Z; Rogers BJ; Wei B; Wirth MJ
    J Sep Sci; 2013 Jun; 36(12):1871-6. PubMed ID: 23686940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water-dependent micromechanical and rheological properties of silica colloidal crystals studied by nanoindentation.
    Gallego-Gómez F; Morales-Flórez V; Blanco A; de la Rosa-Fox N; López C
    Nano Lett; 2012 Sep; 12(9):4920-4. PubMed ID: 22871185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of liquid bridge between colloidal spheres and evaporation temperature on fabrication of colloidal multilayers.
    Ko YG; Shin DH
    J Phys Chem B; 2007 Feb; 111(7):1545-51. PubMed ID: 17256897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of rough surface topography on gas slip flow in microchannels.
    Zhang C; Chen Y; Deng Z; Shi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016319. PubMed ID: 23005537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dilatant flow of concentrated suspensions of rough particles.
    Lootens D; van Damme H; Hémar Y; Hébraud P
    Phys Rev Lett; 2005 Dec; 95(26):268302. PubMed ID: 16486413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface.
    Dai Z; Li Y; Duan G; Jia L; Cai W
    ACS Nano; 2012 Aug; 6(8):6706-16. PubMed ID: 22845626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.