These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 23237738)
1. Accelerated maturation of Tk-subtilisin by a Leu→Pro mutation at the C-terminus of the propeptide, which reduces the binding of the propeptide to Tk-subtilisin. Uehara R; Ueda Y; You DJ; Koga Y; Kanaya S FEBS J; 2013 Feb; 280(4):994-1006. PubMed ID: 23237738 [TBL] [Abstract][Full Text] [Related]
2. Requirement of left-handed glycine residue for high stability of the Tk-subtilisin propeptide as revealed by mutational and crystallographic analyses. Pulido MA; Tanaka S; Sringiew C; You DJ; Matsumura H; Koga Y; Takano K; Kanaya S J Mol Biol; 2007 Dec; 374(5):1359-73. PubMed ID: 17988685 [TBL] [Abstract][Full Text] [Related]
3. Increase in activation rate of Pro-Tk-subtilisin by a single nonpolar-to-polar amino acid substitution at the hydrophobic core of the propeptide domain. Yuzaki K; Sanda Y; You DJ; Uehara R; Koga Y; Kanaya S Protein Sci; 2013 Dec; 22(12):1711-21. PubMed ID: 24115021 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure of Tk-subtilisin folded without propeptide: requirement of propeptide for acceleration of folding. Tanaka S; Takeuchi Y; Matsumura H; Koga Y; Takano K; Kanaya S FEBS Lett; 2008 Nov; 582(28):3875-8. PubMed ID: 18951896 [TBL] [Abstract][Full Text] [Related]
5. Directed evolution of Tk-subtilisin from a hyperthermophilic archaeon: identification of a single amino acid substitution responsible for low-temperature adaptation. Pulido MA; Koga Y; Takano K; Kanaya S Protein Eng Des Sel; 2007 Mar; 20(3):143-53. PubMed ID: 17351019 [TBL] [Abstract][Full Text] [Related]
6. Requirement of Ca(2+) ions for the hyperthermostability of Tk-subtilisin from Thermococcus kodakarensis. Uehara R; Takeuchi Y; Tanaka S; Takano K; Koga Y; Kanaya S Biochemistry; 2012 Jul; 51(26):5369-78. PubMed ID: 22686281 [TBL] [Abstract][Full Text] [Related]
7. An alternative mature form of subtilisin homologue, Tk-SP, from Thermococcus kodakaraensis identified in the presence of Ca2+. Sinsereekul N; Foophow T; Yamanouchi M; Koga Y; Takano K; Kanaya S FEBS J; 2011 Jun; 278(11):1901-11. PubMed ID: 21443525 [TBL] [Abstract][Full Text] [Related]
8. Formation of the high-affinity calcium binding site in pro-subtilisin E with the insertion sequence IS1 of pro-Tk-subtilisin. Uehara R; Angkawidjaja C; Koga Y; Kanaya S Biochemistry; 2013 Dec; 52(50):9080-8. PubMed ID: 24279884 [TBL] [Abstract][Full Text] [Related]
9. Four new crystal structures of Tk-subtilisin in unautoprocessed, autoprocessed and mature forms: insight into structural changes during maturation. Tanaka SI; Matsumura H; Koga Y; Takano K; Kanaya S J Mol Biol; 2007 Sep; 372(4):1055-1069. PubMed ID: 17706669 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of a subtilisin homologue, Tk-SP, from Thermococcus kodakaraensis: requirement of a C-terminal beta-jelly roll domain for hyperstability. Foophow T; Tanaka S; Angkawidjaja C; Koga Y; Takano K; Kanaya S J Mol Biol; 2010 Jul; 400(4):865-77. PubMed ID: 20595040 [TBL] [Abstract][Full Text] [Related]
11. Requirement of a unique Ca(2+)-binding loop for folding of Tk-subtilisin from a hyperthermophilic archaeon. Takeuchi Y; Tanaka S; Matsumura H; Koga Y; Takano K; Kanaya S Biochemistry; 2009 Nov; 48(44):10637-43. PubMed ID: 19813760 [TBL] [Abstract][Full Text] [Related]
12. Requirement of insertion sequence IS1 for thermal adaptation of Pro-Tk-subtilisin from hyperthermophilic archaeon. Uehara R; Tanaka S; Takano K; Koga Y; Kanaya S Extremophiles; 2012 Nov; 16(6):841-51. PubMed ID: 22996828 [TBL] [Abstract][Full Text] [Related]
13. Identification of the interactions critical for propeptide-catalyzed folding of Tk-subtilisin. Tanaka S; Matsumura H; Koga Y; Takano K; Kanaya S J Mol Biol; 2009 Nov; 394(2):306-19. PubMed ID: 19766655 [TBL] [Abstract][Full Text] [Related]
14. The crystal structure of an autoprocessed Ser221Cys-subtilisin E-propeptide complex at 2.0 A resolution. Jain SC; Shinde U; Li Y; Inouye M; Berman HM J Mol Biol; 1998 Nov; 284(1):137-44. PubMed ID: 9811547 [TBL] [Abstract][Full Text] [Related]
15. Subtilisin-like serine protease from hyperthermophilic archaeon Thermococcus kodakaraensis with N- and C-terminal propeptides. Foophow T; Tanaka S; Koga Y; Takano K; Kanaya S Protein Eng Des Sel; 2010 May; 23(5):347-55. PubMed ID: 20100702 [TBL] [Abstract][Full Text] [Related]
16. Ca2+-dependent maturation of subtilisin from a hyperthermophilic archaeon, Thermococcus kodakaraensis: the propeptide is a potent inhibitor of the mature domain but is not required for its folding. Pulido M; Saito K; Tanaka S; Koga Y; Morikawa M; Takano K; Kanaya S Appl Environ Microbiol; 2006 Jun; 72(6):4154-62. PubMed ID: 16751527 [TBL] [Abstract][Full Text] [Related]
17. Crystal structure of unautoprocessed precursor of subtilisin from a hyperthermophilic archaeon: evidence for Ca2+-induced folding. Tanaka S; Saito K; Chon H; Matsumura H; Koga Y; Takano K; Kanaya S J Biol Chem; 2007 Mar; 282(11):8246-55. PubMed ID: 17237225 [TBL] [Abstract][Full Text] [Related]
18. Slow unfolding pathway of hyperthermophilic Tk-RNase H2 examined by pulse proteolysis using the stable protease Tk-subtilisin. Okada J; Koga Y; Takano K; Kanaya S Biochemistry; 2012 Nov; 51(45):9178-91. PubMed ID: 23106363 [TBL] [Abstract][Full Text] [Related]
19. Accelerated refolding of subtilisin BPN' by tertiary-structure-forming mutants of its propeptide. Kojima S; Yanai H; Miura K J Biochem; 2001 Oct; 130(4):471-4. PubMed ID: 11574065 [TBL] [Abstract][Full Text] [Related]
20. Folding pathway mediated by an intramolecular chaperone: characterization of the structural changes in pro-subtilisin E coincident with autoprocessing. Shinde U; Inouye M J Mol Biol; 1995 Sep; 252(1):25-30. PubMed ID: 7666430 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]