These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 23238044)

  • 1. Using pulsed wave ultrasound to evaluate the suitability of hydroxyl radical scavengers in sonochemical systems.
    Xiao R; Diaz-Rivera D; He Z; Weavers LK
    Ultrason Sonochem; 2013 May; 20(3):990-6. PubMed ID: 23238044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of ultrasound frequency on pulsed sonolytic degradation of octylbenzene sulfonic acid.
    Yang L; Sostaric JZ; Rathman JF; Weavers LK
    J Phys Chem B; 2008 Jan; 112(3):852-8. PubMed ID: 18085771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the effects of pulsed ultrasound at 205 and 616 kHz on the sonochemical degradation of octylbenzene sulfonate.
    Deojay DM; Sostaric JZ; Weavers LK
    Ultrason Sonochem; 2011 May; 18(3):801-9. PubMed ID: 21078564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sonochemical degradation of ciprofloxacin and ibuprofen in the presence of matrix organic compounds.
    Xiao R; He Z; Diaz-Rivera D; Pee GY; Weavers LK
    Ultrason Sonochem; 2014 Jan; 21(1):428-35. PubMed ID: 23831421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intensification of sonochemical degradation of malachite green by bromide ions.
    Moumeni O; Hamdaoui O
    Ultrason Sonochem; 2012 May; 19(3):404-9. PubMed ID: 21911308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of sonochemical degradation of phenol using hydrogen atom scavengers.
    Zheng W; Maurin M; Tarr MA
    Ultrason Sonochem; 2005 Mar; 12(4):313-7. PubMed ID: 15501716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel hydroxyl radical scavenging antioxidant activity assay for water-soluble antioxidants using a modified CUPRAC method.
    Bektaşoğlu B; Esin Celik S; Ozyürek M; Güçlü K; Apak R
    Biochem Biophys Res Commun; 2006 Jul; 345(3):1194-200. PubMed ID: 16716257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sonochemical degradation of azo dyes in aqueous solution: a new heterogeneous kinetics model taking into account the local concentration of OH radicals and azo dyes.
    Okitsu K; Iwasaki K; Yobiko Y; Bandow H; Nishimura R; Maeda Y
    Ultrason Sonochem; 2005 Mar; 12(4):255-62. PubMed ID: 15501707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation between iodide dosimetry and terephthalic acid dosimetry to evaluate the reactive radical production due to the acoustic cavitation activity.
    Ebrahiminia A; Mokhtari-Dizaji M; Toliyat T
    Ultrason Sonochem; 2013 Jan; 20(1):366-72. PubMed ID: 22766173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atmospheric oxidation of vinyl and allyl acetate: product distribution and mechanisms of the OH-initiated degradation in the presence and absence of NO(x).
    Blanco MB; Bejan I; Barnes I; Wiesen P; Teruel MA
    Environ Sci Technol; 2012 Aug; 46(16):8817-25. PubMed ID: 22799490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of salicylic acid dosimetry to evaluate hydrodynamic cavitation as an advanced oxidation process.
    Arrojo S; Nerín C; Benito Y
    Ultrason Sonochem; 2007 Mar; 14(3):343-9. PubMed ID: 17027314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sonochemical free radical formation in aqueous solutions.
    Riesz P; Christman CL
    Fed Proc; 1986 Sep; 45(10):2485-92. PubMed ID: 3017767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of ultrasonically initiated emulsion polymerization rate using aliphatic alcohols as hydroxyl radical scavengers.
    Nie M; Wang Q; Qiu G
    Ultrason Sonochem; 2008 Mar; 15(3):222-6. PubMed ID: 17509922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroxyl radical scavenging assay of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method using catalase for hydrogen peroxide degradation.
    Ozyürek M; Bektaşoğlu B; Güçlü K; Apak R
    Anal Chim Acta; 2008 Jun; 616(2):196-206. PubMed ID: 18482604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sonochemical dosimetry: A comparative study of Weissler, Fricke and terephthalic acid methods.
    Rajamma DB; Anandan S; Yusof NSM; Pollet BG; Ashokkumar M
    Ultrason Sonochem; 2021 Apr; 72():105413. PubMed ID: 33338865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sonochemical and photosonochemical degradation of 4-chlorophenol in aqueous media.
    Hamdaoui O; Naffrechoux E
    Ultrason Sonochem; 2008 Sep; 15(6):981-7. PubMed ID: 18468475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study to determine whether cavitation occurs around dental ultrasonic scaling instruments.
    Lea SC; Price GJ; Walmsley AD
    Ultrason Sonochem; 2005 Feb; 12(3):233-6. PubMed ID: 15491887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sonochemical decomposition of organic acids in aqueous solution: understanding of molecular behavior during cavitation by the analysis of a heterogeneous reaction kinetics model.
    Okitsu K; Nanzai B; Kawasaki K; Takenaka N; Bandow H
    Ultrason Sonochem; 2009 Jan; 16(1):155-62. PubMed ID: 18722800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of bicarbonate and carbonate ions on sonochemical degradation of Rhodamine B in aqueous phase.
    Merouani S; Hamdaoui O; Saoudi F; Chiha M; Pétrier C
    J Hazard Mater; 2010 Mar; 175(1-3):593-9. PubMed ID: 19910116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical insights into the sonochemical degradation of recalcitrant organic pollutants with cavitation bubble dynamics.
    Sivasankar T; Moholkar VS
    Ultrason Sonochem; 2009 Aug; 16(6):769-81. PubMed ID: 19321374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.