These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 23238240)

  • 1. Integrative physiology of fundamental frequency control in birds.
    Goller F; Riede T
    J Physiol Paris; 2013 Jun; 107(3):230-42. PubMed ID: 23238240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor control of sound frequency in birdsong involves the interaction between air sac pressure and labial tension.
    Alonso R; Goller F; Mindlin GB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032706. PubMed ID: 24730873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of rapid neuromuscular transmission to the fine control of acoustic parameters of birdsong.
    Mencio C; Kuberan B; Goller F
    J Neurophysiol; 2017 Feb; 117(2):637-645. PubMed ID: 27852738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional anatomy of neural pathways contributing to the control of song production in birds.
    Wild JM
    Eur J Morphol; 1997 Oct; 35(4):303-25. PubMed ID: 9290938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subglottal pressure, tracheal airflow, and intrinsic laryngeal muscle activity during rat ultrasound vocalization.
    Riede T
    J Neurophysiol; 2011 Nov; 106(5):2580-92. PubMed ID: 21832032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracheal length changes during zebra finch song and their possible role in upper vocal tract filtering.
    Daley M; Goller F
    J Neurobiol; 2004 Jun; 59(3):319-30. PubMed ID: 15146548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Respiratory patterns in oscine birds during normal respiration and song production.
    Trevisan MA; Mendez JM; Mindlin GB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 1):061911. PubMed ID: 16906868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bilateral syringeal interaction in vocal production of an oscine bird sound.
    Nowicki S; Capranica RR
    Science; 1986 Mar; 231(4743):1297-9. PubMed ID: 3945824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acquisition of an acoustic template leads to refinement of song motor gestures.
    Méndez JM; Dall'Asén AG; Cooper BG; Goller F
    J Neurophysiol; 2010 Aug; 104(2):984-93. PubMed ID: 20554848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beak gape dynamics during song in the zebra finch.
    Goller F; Mallinckrodt MJ; Torti SD
    J Neurobiol; 2004 Jun; 59(3):289-303. PubMed ID: 15146546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amplitude and frequency modulation control of sound production in a mechanical model of the avian syrinx.
    Elemans CP; Muller M; Larsen ON; van Leeuwen JL
    J Exp Biol; 2009 Apr; 212(Pt 8):1212-24. PubMed ID: 19329754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic reconstruction of physiological gestures used in a model of birdsong production.
    Boari S; Perl YS; Amador A; Margoliash D; Mindlin GB
    J Neurophysiol; 2015 Nov; 114(5):2912-22. PubMed ID: 26378204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of syringeal muscles in gating airflow and sound production in singing brown thrashers.
    Goller F; Suthers RA
    J Neurophysiol; 1996 Feb; 75(2):867-76. PubMed ID: 8714659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peripheral mechanisms for vocal production in birds - differences and similarities to human speech and singing.
    Riede T; Goller F
    Brain Lang; 2010 Oct; 115(1):69-80. PubMed ID: 20153887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motor dynamics of song production by mimic thrushes.
    Suthers RA; Goller F; Hartley RS
    J Neurobiol; 1994 Aug; 25(8):917-36. PubMed ID: 7964705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superfast vocal muscles control song production in songbirds.
    Elemans CP; Mead AF; Rome LC; Goller F
    PLoS One; 2008 Jul; 3(7):e2581. PubMed ID: 18612467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The auditory-vocal-respiratory axis in birds.
    Wild JM
    Brain Behav Evol; 1994; 44(4-5):192-209. PubMed ID: 7842281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of syringeal muscles in controlling the phonology of bird song.
    Goller F; Suthers RA
    J Neurophysiol; 1996 Jul; 76(1):287-300. PubMed ID: 8836225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bilateral syringeal coupling during phonation of a songbird.
    Nowicki S; Capranica RR
    J Neurosci; 1986 Dec; 6(12):3595-610. PubMed ID: 3794791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-voice complexity from a single side of the syrinx in northern mockingbird Mimus polyglottos vocalizations.
    Zollinger SA; Riede T; Suthers RA
    J Exp Biol; 2008 Jun; 211(Pt 12):1978-91. PubMed ID: 18515729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.