These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 2323827)
1. Evidence that a low-affinity sucrose phosphotransferase activity in Streptococcus mutans GS-5 is a high-affinity trehalose uptake system. Poy F; Jacobson GR Infect Immun; 1990 May; 58(5):1479-80. PubMed ID: 2323827 [TBL] [Abstract][Full Text] [Related]
2. Starvation-induced stimulation of sugar uptake in Streptococcus mutans is due to an effect on the activities of preexisting proteins of the phosphotransferase system. Lodge J; Jacobson GR Infect Immun; 1988 Oct; 56(10):2594-600. PubMed ID: 3417351 [TBL] [Abstract][Full Text] [Related]
3. Phosphoenolpyruvate-dependent sucrose phosphotransferase activity in five serotypes of Streptococcus mutans. Slee AM; Tanzer JM Infect Immun; 1979 Nov; 26(2):783-6. PubMed ID: 546796 [TBL] [Abstract][Full Text] [Related]
4. Construction of scrA::lacZ gene fusions to investigate regulation of the sucrose PTS of Streptococcus mutans. Sato Y; Yamamoto Y; Suzuki R; Kizaki H; Kuramitsu HK FEMS Microbiol Lett; 1991 Apr; 63(2-3):339-45. PubMed ID: 1905660 [TBL] [Abstract][Full Text] [Related]
5. Properties of Streptococcus mutans Ingbritt growing on limiting sucrose in a chemostat: repression of the phosphoenolpyruvate phosphotransferase transport system. Ellwood DC; Hamilton IR Infect Immun; 1982 May; 36(2):576-81. PubMed ID: 7085072 [TBL] [Abstract][Full Text] [Related]
6. Identification and properties of distinct sucrose and glucose phosphotransferase enzyme II activities in Streptococcus mutans 6715g. Jacobson GR; Mimura CS; Scott PJ; Thompson PW Infect Immun; 1984 Dec; 46(3):854-6. PubMed ID: 6500714 [TBL] [Abstract][Full Text] [Related]
7. Global transcriptional analysis of Streptococcus mutans sugar transporters using microarrays. Ajdić D; Pham VT J Bacteriol; 2007 Jul; 189(14):5049-59. PubMed ID: 17496079 [TBL] [Abstract][Full Text] [Related]
8. A novel phosphotransferase system of Streptococcus mutans is responsible for transport of carbohydrates with α-1,3 linkage. Ajdic D; Chen Z Mol Oral Microbiol; 2013 Apr; 28(2):114-28. PubMed ID: 23193985 [TBL] [Abstract][Full Text] [Related]
9. Regulation of sugar uptake via the multiple sugar metabolism operon by the phosphoenolpyruvate-dependent sugar phosphotransferase transport system of Streptococcus mutans. Cvitkovitch DG; Boyd DA; Hamilton IR Dev Biol Stand; 1995; 85():351-6. PubMed ID: 8586201 [No Abstract] [Full Text] [Related]
10. Transport of trehalose in Salmonella typhimurium. Postma PW; Keizer HG; Koolwijk P J Bacteriol; 1986 Dec; 168(3):1107-11. PubMed ID: 3023298 [TBL] [Abstract][Full Text] [Related]
11. Regulation of sugar transport via the multiple sugar metabolism operon of Streptococcus mutans by the phosphoenolpyruvate phosphotransferase system. Cvitkovitch DG; Boyd DA; Hamilton IR J Bacteriol; 1995 Oct; 177(19):5704-6. PubMed ID: 7559362 [TBL] [Abstract][Full Text] [Related]
12. Transport and phosphorylation of xylitol by a fructose phosphotransferase system in Streptococcus mutans. Trahan L; Bareil M; Gauthier L; Vadeboncoeur C Caries Res; 1985; 19(1):53-63. PubMed ID: 3856485 [No Abstract] [Full Text] [Related]
13. Repeated DNA sequence involved in mutations affecting transport of sucrose into Streptococcus mutans V403 via the phosphoenolpyruvate phosphotransferase system. Macrina FL; Jones KR; Alpert CA; Chassy BM; Michalek SM Infect Immun; 1991 Apr; 59(4):1535-43. PubMed ID: 2004831 [TBL] [Abstract][Full Text] [Related]
14. Sucrose transport by Streptococcus mutans. Evidence for multiple transport systems. Slee AM; Tanzer JM Biochim Biophys Acta; 1982 Nov; 692(3):415-24. PubMed ID: 7171603 [TBL] [Abstract][Full Text] [Related]
15. Transport of sugars, including sucrose, by the msm transport system of Streptococcus mutans. Tao L; Sutcliffe IC; Russell RR; Ferretti JJ J Dent Res; 1993 Oct; 72(10):1386-90. PubMed ID: 8408880 [TBL] [Abstract][Full Text] [Related]
16. Transport and phosphorylation of disaccharides by the ruminal bacterium Streptococcus bovis. Martin SA; Russell JB Appl Environ Microbiol; 1987 Oct; 53(10):2388-93. PubMed ID: 2827569 [TBL] [Abstract][Full Text] [Related]
17. Effect of growth conditions on sucrose phosphotransferase activity of Streptococcus mutans. Slee AM; Tanzer JM Infect Immun; 1980 Mar; 27(3):922-7. PubMed ID: 7380558 [TBL] [Abstract][Full Text] [Related]
18. Evidence for the involvement of proton motive force in the transport of glucose by a mutant of Streptococcus mutans strain DR0001 defective in glucose-phosphoenolpyruvate phosphotransferase activity. Hamilton IR; St Martin EJ Infect Immun; 1982 May; 36(2):567-75. PubMed ID: 6282753 [TBL] [Abstract][Full Text] [Related]
19. Characterization of a phosphoenolpyruvate-dependent sucrose phosphotransferase system in Streptococcus mutans. St Martin EJ; Wittenberger CL Infect Immun; 1979 Jun; 24(3):865-8. PubMed ID: 468378 [TBL] [Abstract][Full Text] [Related]
20. Involvement of phosphoenolpyruvate in the catabolism of caries-conducive disaccharides by Streptococcus mutans: lactose transport. Calmes R Infect Immun; 1978 Mar; 19(3):934-42. PubMed ID: 246429 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]