BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 23238731)

  • 1. The laminar development of direction selectivity in ferret visual cortex.
    Clemens JM; Ritter NJ; Roy A; Miller JM; Van Hooser SD
    J Neurosci; 2012 Dec; 32(50):18177-85. PubMed ID: 23238731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experience-Dependent Development of Feature-Selective Synchronization in the Primary Visual Cortex.
    Ishikawa AW; Komatsu Y; Yoshimura Y
    J Neurosci; 2018 Sep; 38(36):7852-7869. PubMed ID: 30064994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The development of direction selectivity in ferret visual cortex requires early visual experience.
    Li Y; Fitzpatrick D; White LE
    Nat Neurosci; 2006 May; 9(5):676-81. PubMed ID: 16604068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of orientation selectivity in ferret visual cortex and effects of deprivation.
    Chapman B; Stryker MP
    J Neurosci; 1993 Dec; 13(12):5251-62. PubMed ID: 8254372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of direction selectivity in mouse cortical neurons.
    Rochefort NL; Narushima M; Grienberger C; Marandi N; Hill DN; Konnerth A
    Neuron; 2011 Aug; 71(3):425-32. PubMed ID: 21835340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Acute Visual Experience on Development of LGN Receptive Fields in the Ferret.
    Stacy AK; Schneider NA; Gilman NK; Van Hooser SD
    J Neurosci; 2023 May; 43(19):3495-3508. PubMed ID: 37028934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The contribution of sensory experience to the maturation of orientation selectivity in ferret visual cortex.
    White LE; Coppola DM; Fitzpatrick D
    Nature; 2001 Jun; 411(6841):1049-52. PubMed ID: 11429605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of cortical orientation selectivity in the absence of visual experience with contour.
    Ohshiro T; Hussain S; Weliky M
    J Neurophysiol; 2011 Oct; 106(4):1923-32. PubMed ID: 21753023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual Stimulus Speed Does Not Influence the Rapid Emergence of Direction Selectivity in Ferret Visual Cortex.
    Ritter NJ; Anderson NM; Van Hooser SD
    J Neurosci; 2017 Feb; 37(6):1557-1567. PubMed ID: 28069921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of Cross-Orientation Suppression and Size Tuning and the Role of Experience.
    Popović M; Stacy AK; Kang M; Nanu R; Oettgen CE; Wise DL; Fiser J; Van Hooser SD
    J Neurosci; 2018 Mar; 38(11):2656-2670. PubMed ID: 29431651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of direction selectivity in cat primary visual cortex as revealed by visual adaptation.
    Priebe NJ; Lampl I; Ferster D
    J Neurophysiol; 2010 Nov; 104(5):2615-23. PubMed ID: 20739595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direction selectivity of excitatory and inhibitory neurons in ferret visual cortex.
    Gibber M; Chen B; Roerig B
    Neuroreport; 2001 Jul; 12(10):2293-6. PubMed ID: 11447352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular Representation of Luminance Polarity in the Superficial Layers of Primary Visual Cortex.
    Smith GB; Whitney DE; Fitzpatrick D
    Neuron; 2015 Nov; 88(4):805-18. PubMed ID: 26590348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experience with moving visual stimuli drives the early development of cortical direction selectivity.
    Li Y; Van Hooser SD; Mazurek M; White LE; Fitzpatrick D
    Nature; 2008 Dec; 456(7224):952-6. PubMed ID: 18946471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Initial neighborhood biases and the quality of motion stimulation jointly influence the rapid emergence of direction preference in visual cortex.
    Van Hooser SD; Li Y; Christensson M; Smith GB; White LE; Fitzpatrick D
    J Neurosci; 2012 May; 32(21):7258-66. PubMed ID: 22623671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal activity is not required for the initial formation and maturation of visual selectivity.
    Hagihara KM; Murakami T; Yoshida T; Tagawa Y; Ohki K
    Nat Neurosci; 2015 Dec; 18(12):1780-8. PubMed ID: 26523644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experience-dependent and independent binocular correspondence of receptive field subregions in mouse visual cortex.
    Sarnaik R; Wang BS; Cang J
    Cereb Cortex; 2014 Jun; 24(6):1658-70. PubMed ID: 23389996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging feed-forward inhibition allows the robust formation of direction selectivity in the developing ferret visual cortex.
    Van Hooser SD; Escobar GM; Maffei A; Miller P
    J Neurophysiol; 2014 Jun; 111(11):2355-73. PubMed ID: 24598528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of cortical NMDA receptor function prevents development of orientation selectivity in the primary visual cortex.
    Ramoa AS; Mower AF; Liao D; Jafri SI
    J Neurosci; 2001 Jun; 21(12):4299-309. PubMed ID: 11404415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orientation tuning, but not direction selectivity, is invariant to temporal frequency in primary visual cortex.
    Moore BD; Alitto HJ; Usrey WM
    J Neurophysiol; 2005 Aug; 94(2):1336-45. PubMed ID: 15872063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.