BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 23238731)

  • 21. The development of orientation and direction selectivity in the rabbit visual cortex.
    Grigonis AM; Zingaro GJ; Murphy EH
    Brain Res; 1988 May; 468(2):315-8. PubMed ID: 3382963
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential tuning of excitation and inhibition shapes direction selectivity in ferret visual cortex.
    Wilson DE; Scholl B; Fitzpatrick D
    Nature; 2018 Aug; 560(7716):97-101. PubMed ID: 30046106
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contralateral Bias of High Spatial Frequency Tuning and Cardinal Direction Selectivity in Mouse Visual Cortex.
    Salinas KJ; Figueroa Velez DX; Zeitoun JH; Kim H; Gandhi SP
    J Neurosci; 2017 Oct; 37(42):10125-10138. PubMed ID: 28924011
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Layer-specific refinement of visual cortex function after eye opening in the awake mouse.
    Hoy JL; Niell CM
    J Neurosci; 2015 Feb; 35(8):3370-83. PubMed ID: 25716837
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Does experience provide a permissive or instructive influence on the development of direction selectivity in visual cortex?
    Roy A; Christie IK; Escobar GM; Osik JJ; Popović M; Ritter NJ; Stacy AK; Wang S; Fiser J; Miller P; Van Hooser SD
    Neural Dev; 2018 Jul; 13(1):16. PubMed ID: 30001203
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A theory of the influence of eye movements on the refinement of direction selectivity in the cat's primary visual cortex.
    Casile A; Rucci M
    Network; 2009; 20(4):197-232. PubMed ID: 19919281
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatial-frequency tuning and geniculocortical projections in the visual cortex (areas 17 and 18) of the pigmented ferret.
    Baker GE; Thompson ID; Krug K; Smyth D; Tolhurst DJ
    Eur J Neurosci; 1998 Aug; 10(8):2657-68. PubMed ID: 9767395
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of neuronal responses in cat posteromedial lateral suprasylvian visual cortex.
    McCall MA; Tong L; Spear PD
    Brain Res; 1988 Apr; 447(1):67-78. PubMed ID: 3382953
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Different inhibitory synaptic input patterns in excitatory and inhibitory layer 4 neurons of ferret visual cortex.
    Roerig B; Chen B; Kao JP
    Cereb Cortex; 2003 Apr; 13(4):350-63. PubMed ID: 12631564
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Complete restoration of visual cortical responses is possible late in development. Focus on "recovery of cortical binocularity and orientation selectivity after the critical period for ocular dominance plasticity".
    Chalupa LM
    J Neurophysiol; 2004 Oct; 92(4):1969-70. PubMed ID: 15381738
    [No Abstract]   [Full Text] [Related]  

  • 31. Development and binocular matching of orientation selectivity in visual cortex: a computational model.
    Xu X; Cang J; Riecke H
    J Neurophysiol; 2020 Apr; 123(4):1305-1319. PubMed ID: 31913758
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of stimulus selectivity and functional organization in the suprasylvian visual cortex of the cat.
    Price DJ; Zumbroich TJ; Blakemore C
    Proc R Soc Lond B Biol Sci; 1988 Mar; 233(1271):123-63. PubMed ID: 2898145
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Receptive-field properties of neurons in middle temporal visual area (MT) of owl monkeys.
    Felleman DJ; Kaas JH
    J Neurophysiol; 1984 Sep; 52(3):488-513. PubMed ID: 6481441
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direction and orientation selectivity of neurons in visual area MT of the macaque.
    Albright TD
    J Neurophysiol; 1984 Dec; 52(6):1106-30. PubMed ID: 6520628
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synaptic and intrinsic mechanisms underlying development of cortical direction selectivity.
    Roy A; Osik JJ; Meschede-Krasa B; Alford WT; Leman DP; Van Hooser SD
    Elife; 2020 Jul; 9():. PubMed ID: 32701059
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatial distribution of inhibitory synaptic connections during development of ferret primary visual cortex.
    Chen B; Boukamel K; Kao JP; Roerig B
    Exp Brain Res; 2005 Jan; 160(4):496-509. PubMed ID: 15502991
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thalamus provides layer 4 of primary visual cortex with orientation- and direction-tuned inputs.
    Sun W; Tan Z; Mensh BD; Ji N
    Nat Neurosci; 2016 Feb; 19(2):308-15. PubMed ID: 26691829
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional mapping of horizontal connections in developing ferret visual cortex: experiments and modeling.
    Weliky M; Katz LC
    J Neurosci; 1994 Dec; 14(12):7291-305. PubMed ID: 7996176
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mixed functional microarchitectures for orientation selectivity in the mouse primary visual cortex.
    Kondo S; Yoshida T; Ohki K
    Nat Commun; 2016 Oct; 7():13210. PubMed ID: 27767032
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional organization of envelope-responsive neurons in early visual cortex: organization of carrier tuning properties.
    Li G; Baker CL
    J Neurosci; 2012 May; 32(22):7538-49. PubMed ID: 22649232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.