These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 23238940)

  • 1. Powering up the future: radical polymers for battery applications.
    Janoschka T; Hager MD; Schubert US
    Adv Mater; 2012 Dec; 24(48):6397-409. PubMed ID: 23238940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymers based on stable phenoxyl radicals for the use in organic radical batteries.
    Jähnert T; Häupler B; Janoschka T; Hager MD; Schubert US
    Macromol Rapid Commun; 2014 May; 35(9):882-7. PubMed ID: 24652613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(exTTF): a novel redox-active polymer as active material for li-organic batteries.
    Häupler B; Burges R; Friebe C; Janoschka T; Schmidt D; Wild A; Schubert US
    Macromol Rapid Commun; 2014 Aug; 35(15):1367-71. PubMed ID: 24861014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitroxide polymer networks formed by Michael addition: on site-cured electrode-active organic coating.
    Ibe T; Frings RB; Lachowicz A; Kyo S; Nishide H
    Chem Commun (Camb); 2010 May; 46(20):3475-7. PubMed ID: 20414502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micellar cathodes from self-assembled nitroxide-containing block copolymers in battery electrolytes.
    Hauffman G; Maguin Q; Bourgeois JP; Vlad A; Gohy JF
    Macromol Rapid Commun; 2014 Jan; 35(2):228-233. PubMed ID: 24127365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anthraquinone-Based Polymer as Cathode in Rechargeable Magnesium Batteries.
    Bitenc J; Pirnat K; Bančič T; Gaberšček M; Genorio B; Randon-Vitanova A; Dominko R
    ChemSusChem; 2015 Dec; 8(24):4128-32. PubMed ID: 26610185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assorted Phenoxyl-Radical Polymers and Their Application in Lithium-Organic Batteries.
    Jähnert T; Hager MD; Schubert US
    Macromol Rapid Commun; 2016 Apr; 37(8):725-30. PubMed ID: 26937847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable Radical Materials for Energy Applications.
    Wilcox DA; Agarkar V; Mukherjee S; Boudouris BW
    Annu Rev Chem Biomol Eng; 2018 Jun; 9():83-103. PubMed ID: 29579403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage.
    Jiang J; Li Y; Liu J; Huang X; Yuan C; Lou XW
    Adv Mater; 2012 Oct; 24(38):5166-80. PubMed ID: 22912066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the electrochemical performance of the li4 ti5 o12 electrode in a rechargeable magnesium battery by lithium-magnesium co-intercalation.
    Wu N; Yang ZZ; Yao HR; Yin YX; Gu L; Guo YG
    Angew Chem Int Ed Engl; 2015 May; 54(19):5757-61. PubMed ID: 25783632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Progress in Polymeric Carbonyl-Based Electrode Materials for Lithium and Sodium Ion Batteries.
    Amin K; Mao L; Wei Z
    Macromol Rapid Commun; 2019 Jan; 40(1):e1800565. PubMed ID: 30411834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(TEMPO)/Zinc Hybrid-Flow Battery: A Novel, "Green," High Voltage, and Safe Energy Storage System.
    Winsberg J; Janoschka T; Morgenstern S; Hagemann T; Muench S; Hauffman G; Gohy JF; Hager MD; Schubert US
    Adv Mater; 2016 Mar; 28(11):2238-43. PubMed ID: 26810789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Power-Density Organic Radical Batteries.
    Friebe C; Schubert US
    Top Curr Chem (Cham); 2017 Feb; 375(1):19. PubMed ID: 28150187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multimodal investigation of electronic transport in PTMA and its impact on organic radical battery performance.
    Daniel DT; Oevermann S; Mitra S; Rudolf K; Heuer A; Eichel RA; Winter M; Diddens D; Brunklaus G; Granwehr J
    Sci Rep; 2023 Jul; 13(1):10934. PubMed ID: 37414786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymer-Based Organic Batteries.
    Muench S; Wild A; Friebe C; Häupler B; Janoschka T; Schubert US
    Chem Rev; 2016 Aug; 116(16):9438-84. PubMed ID: 27479607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ thermally cross-linked polyacrylonitrile as binder for high-performance silicon as lithium ion battery anode.
    Shen L; Shen L; Wang Z; Chen L
    ChemSusChem; 2014 Jul; 7(7):1951-6. PubMed ID: 24782265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-Life and High-Power Binder-Free Cathode Based on One-Step Synthesis of Radical Polymers with Multi-Pendant Groups.
    Chen Y; Zhang Y; Liu X; Fan X; Bai B; Yang K; Liang Z; Zhang Z; Mai K
    Macromol Rapid Commun; 2018 Jun; 39(12):e1800195. PubMed ID: 29770518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A low cost, all-organic Na-ion battery based on polymeric cathode and anode.
    Deng W; Liang X; Wu X; Qian J; Cao Y; Ai X; Feng J; Yang H
    Sci Rep; 2013; 3():2671. PubMed ID: 24036973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Key challenges in future Li-battery research.
    Tarascon JM
    Philos Trans A Math Phys Eng Sci; 2010 Jul; 368(1923):3227-41. PubMed ID: 20566508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.