These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23239051)

  • 1. A highly tunable biocompatible and multifunctional biodegradable elastomer.
    Pereira MJ; Ouyang B; Sundback CA; Lang N; Friehs I; Mureli S; Pomerantseva I; McFadden J; Mochel MC; Mwizerwa O; Del Nido P; Sarkar D; Masiakos PT; Langer R; Ferreira LS; Karp JM
    Adv Mater; 2013 Feb; 25(8):1209-15. PubMed ID: 23239051
    [No Abstract]   [Full Text] [Related]  

  • 2. A tough biodegradable elastomer.
    Wang Y; Ameer GA; Sheppard BJ; Langer R
    Nat Biotechnol; 2002 Jun; 20(6):602-6. PubMed ID: 12042865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo degradation characteristics of poly(glycerol sebacate).
    Wang Y; Kim YM; Langer R
    J Biomed Mater Res A; 2003 Jul; 66(1):192-7. PubMed ID: 12833446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving fluorescence imaging of biological cells on biomedical polymers.
    Jaafar IH; LeBlon CE; Wei MT; Ou-Yang D; Coulter JP; Jedlicka SS
    Acta Biomater; 2011 Apr; 7(4):1588-98. PubMed ID: 21145439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone.
    Zaky SH; Lee KW; Gao J; Jensen A; Verdelis K; Wang Y; Almarza AJ; Sfeir C
    Acta Biomater; 2017 May; 54():95-106. PubMed ID: 28110067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic and oxidative degradation of poly(polyol sebacate).
    Li Y; Thouas GA; Shi H; Chen Q
    J Biomater Appl; 2014 Apr; 28(8):1138-50. PubMed ID: 23904286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanically tissue-like elastomeric polymers and their potential as a vehicle to deliver functional cardiomyocytes.
    Xu B; Li Y; Fang X; Thouas GA; Cook WD; Newgreen DF; Chen Q
    J Mech Behav Biomed Mater; 2013 Dec; 28():354-65. PubMed ID: 24125905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and properties of a novel biodegradable polyester elastomer with functional groups.
    Liu QY; Wu SZ; Tan TW; Weng JY; Zhang LQ; Liu L; Tian W; Chen DF
    J Biomater Sci Polym Ed; 2009; 20(11):1567-78. PubMed ID: 19619397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatibility testing of ABA triblock copolymers consisting of poly(L-lactic-co-glycolic acid) A blocks attached to a central poly(ethylene oxide) B block under in vitro conditions using different L929 mouse fibroblasts cell culture models.
    Zange R; Li Y; Kissel T
    J Control Release; 1998 Dec; 56(1-3):249-58. PubMed ID: 9801448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesenchymal Cells Affect Salivary Epithelial Cell Morphology on PGS/PLGA Core/Shell Nanofibers.
    Sfakis L; Kamaldinov T; Khmaladze A; Hosseini ZF; Nelson DA; Larsen M; Castracane J
    Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29596382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable polyester elastomers in tissue engineering.
    Webb AR; Yang J; Ameer GA
    Expert Opin Biol Ther; 2004 Jun; 4(6):801-12. PubMed ID: 15174963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradable and radically polymerized elastomers with enhanced processing capabilities.
    Ifkovits JL; Padera RF; Burdick JA
    Biomed Mater; 2008 Sep; 3(3):034104. PubMed ID: 18689916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of integrin beta1-mediated cell adhesion on biodegradable polymers under serum depletion in mesenchymal stem cells and chondrocytes.
    Lee JW; Kim YH; Park KD; Jee KS; Shin JW; Hahn SB
    Biomaterials; 2004 May; 25(10):1901-9. PubMed ID: 14738854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production and surface modification of polylactide-based polymeric scaffolds for soft-tissue engineering.
    Cao Y; Croll TI; Cooper-White JJ; O'Connor AJ; Stevens GW
    Methods Mol Biol; 2004; 238():87-112. PubMed ID: 14970441
    [No Abstract]   [Full Text] [Related]  

  • 15. Biodegradable fibrous scaffolds with tunable properties formed from photo-cross-linkable poly(glycerol sebacate).
    Ifkovits JL; Devlin JJ; Eng G; Martens TP; Vunjak-Novakovic G; Burdick JA
    ACS Appl Mater Interfaces; 2009 Sep; 1(9):1878-86. PubMed ID: 20160937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physicochemical characterization of photopolymerizable PLGA blends.
    Baroli B
    Adv Exp Med Biol; 2006; 585():183-96. PubMed ID: 17120785
    [No Abstract]   [Full Text] [Related]  

  • 17. Manipulation of mechanical compliance of elastomeric PGS by incorporation of halloysite nanotubes for soft tissue engineering applications.
    Chen QZ; Liang SL; Wang J; Simon GP
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1805-18. PubMed ID: 22098880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the control of the compositions and properties of a biodegradable polyester elastomer.
    Liu Q; Tan T; Weng J; Zhang L
    Biomed Mater; 2009 Apr; 4(2):025015. PubMed ID: 19349654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macroporous elastomeric scaffolds with extensive micropores for soft tissue engineering.
    Gao J; Crapo PM; Wang Y
    Tissue Eng; 2006 Apr; 12(4):917-25. PubMed ID: 16674303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer-ceramic composite scaffold induces osteogenic differentiation of human mesenchymal stem cells.
    Leong NL; Jiang J; Lu HH
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2651-4. PubMed ID: 17946970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.