These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23239137)

  • 41. Brief communication: the ecosystem perspective in ecotoxicology as a way forward for the ecological risk assessment of chemicals.
    De Laender F; Janssen CR
    Integr Environ Assess Manag; 2013 Jul; 9(3):e34-8. PubMed ID: 23610029
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Aquatic ecological risk assessment of microcystins and nitrogen pollution based on species sensitivity distribution].
    Chen J; Liu YM; Zhang JY
    Ying Yong Sheng Tai Xue Bao; 2014 Apr; 25(4):1171-80. PubMed ID: 25011315
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of short, acute exposure hazard estimates: a tool for assessing the effects of chemical spills in aquatic environments.
    Bejarano AC; Farr JK
    Environ Toxicol Chem; 2013 Aug; 32(8):1918-27. PubMed ID: 23625642
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Analysis of the ecotoxicity data submitted within the framework of the REACH Regulation. Part 2. Experimental aquatic toxicity assays.
    Tarazona JV; Sobanska MA; Cesnaitis R; Sobanski T; Bonnomet V; Versonnen B; De Coen W
    Sci Total Environ; 2014 Feb; 472():137-45. PubMed ID: 24291139
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spatially explicit bioaccumulation modeling in aquatic environments: Results from 2 demonstration sites.
    von Stackelberg K; Williams MA; Clough J; Johnson MS
    Integr Environ Assess Manag; 2017 Nov; 13(6):1023-1037. PubMed ID: 28294524
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects assessment: boron compounds in the aquatic environment.
    Schoderboeck L; Mühlegger S; Losert A; Gausterer C; Hornek R
    Chemosphere; 2011 Jan; 82(3):483-7. PubMed ID: 21055789
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Is the chronic Tier-1 effect assessment approach for insecticides protective for aquatic ecosystems?
    Brock TC; Bhatta R; van Wijngaarden RP; Rico A
    Integr Environ Assess Manag; 2016 Oct; 12(4):747-58. PubMed ID: 26442690
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Trophic transfer of polychlorinated biphenyls (PCB) in a boreal lake ecosystem: testing of bioaccumulation models.
    Figueiredo K; Mäenpää K; Leppänen MT; Kiljunen M; Lyytikäinen M; Kukkonen JV; Koponen H; Biasi C; Martikainen PJ
    Sci Total Environ; 2014 Jan; 466-467():690-8. PubMed ID: 23959220
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Are persistent organic pollutants and metals in eel muscle predictive for the ecological water quality?
    Van Ael E; Belpaire C; Breine J; Geeraerts C; Van Thuyne G; Eulaers I; Blust R; Bervoets L
    Environ Pollut; 2014 Mar; 186():165-71. PubMed ID: 24378813
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Prediction of freshwater ecotoxicological hazardous concentrations of major surfactants using the QSAR-ICE-SSD method.
    Liang W; Zhao X; Wang X; Tang Z; Zhang X; Wang X
    Environ Int; 2024 Mar; 185():108472. PubMed ID: 38368720
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Predicted no effect concentration derivation as a significant source of variability in environmental hazard assessments of chemicals in aquatic systems: an international analysis.
    Hahn T; Diamond J; Dobson S; Howe P; Kielhorn J; Koennecker G; Lee-Steere C; Mangelsdorf I; Schneider U; Sugaya Y; Taylor K; Dam RV; Stauber JL
    Integr Environ Assess Manag; 2014 Jan; 10(1):30-6. PubMed ID: 23913910
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dietary Toxicity Thresholds and Ecological Risks for Birds and Mammals Based on Species Sensitivity Distributions.
    Korsman JC; Schipper AM; Hendriks AJ
    Environ Sci Technol; 2016 Oct; 50(19):10644-10652. PubMed ID: 27579512
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The toxicity of molybdate to freshwater and marine organisms. II. Effects assessment of molybdate in the aquatic environment under REACH.
    Heijerick DG; Regoli L; Carey S
    Sci Total Environ; 2012 Oct; 435-436():179-87. PubMed ID: 22854089
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Population-level effects and recovery of aquatic invertebrates after multiple applications of an insecticide.
    Dohmen GP; Preuss TG; Hamer M; Galic N; Strauss T; van den Brink PJ; De Laender F; Bopp S
    Integr Environ Assess Manag; 2016 Jan; 12(1):67-81. PubMed ID: 26119989
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Chemical Aquatic Fate and Effects database (CAFE), a tool that supports assessments of chemical spills in aquatic environments.
    Bejarano AC; Farr JK; Jenne P; Chu V; Hielscher A
    Environ Toxicol Chem; 2016 Jun; 35(6):1576-86. PubMed ID: 26497000
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Non-parametric kernel density estimation of species sensitivity distributions in developing water quality criteria of metals.
    Wang Y; Wu F; Giesy JP; Feng C; Liu Y; Qin N; Zhao Y
    Environ Sci Pollut Res Int; 2015 Sep; 22(18):13980-9. PubMed ID: 25953609
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Aquatic effects assessment: needs and tools.
    Marchini S
    Ann Ist Super Sanita; 2002; 38(2):119-29. PubMed ID: 12387134
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Applying adverse outcome pathways and species sensitivity-weighted distribution to predicted-no-effect concentration derivation and quantitative ecological risk assessment for bisphenol A and 4-nonylphenol in aquatic environments: A case study on Tianjin City, China.
    Wang Y; Na G; Zong H; Ma X; Yang X; Mu J; Wang L; Lin Z; Zhang Z; Wang J; Zhao J
    Environ Toxicol Chem; 2018 Feb; 37(2):551-562. PubMed ID: 28984376
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Framework for Optimizing Selection of Interspecies Correlation Estimation Models to Address Species Diversity and Toxicity Gaps in an Aquatic Database.
    Bejarano AC; Raimondo S; Barron MG
    Environ Sci Technol; 2017 Jul; 51(14):8158-8165. PubMed ID: 28636817
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chronic toxicity of aluminum, at a pH of 6, to freshwater organisms: Empirical data for the development of international regulatory standards/criteria.
    Cardwell AS; Adams WJ; Gensemer RW; Nordheim E; Santore RC; Ryan AC; Stubblefield WA
    Environ Toxicol Chem; 2018 Jan; 37(1):36-48. PubMed ID: 28667768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.