These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 23239545)
1. The generalized energy-based fragmentation approach with an improved fragmentation scheme: benchmark results and illustrative applications. Hua S; Li W; Li S Chemphyschem; 2013 Jan; 14(1):108-15. PubMed ID: 23239545 [TBL] [Abstract][Full Text] [Related]
2. Generalized energy-based fragmentation approach and its applications to macromolecules and molecular aggregates. Li S; Li W; Ma J Acc Chem Res; 2014 Sep; 47(9):2712-20. PubMed ID: 24873495 [TBL] [Abstract][Full Text] [Related]
3. An efficient implementation of the generalized energy-based fragmentation approach for general large molecules. Hua S; Hua W; Li S J Phys Chem A; 2010 Aug; 114(31):8126-34. PubMed ID: 20684586 [TBL] [Abstract][Full Text] [Related]
4. Generalized energy-based fragmentation approach for computing the ground-state energies and properties of large molecules. Li W; Li S; Jiang Y J Phys Chem A; 2007 Mar; 111(11):2193-9. PubMed ID: 17388268 [TBL] [Abstract][Full Text] [Related]
5. Accurate prediction of the structure and vibrational spectra of ionic liquid clusters with the generalized energy-based fragmentation approach: critical role of ion-pair-based fragmentation. Li Y; Yuan D; Wang Q; Li W; Li S Phys Chem Chem Phys; 2018 May; 20(19):13547-13557. PubMed ID: 29726875 [TBL] [Abstract][Full Text] [Related]
6. Structures and properties of large supramolecular coordination complexes predicted with the generalized energy-based fragmentation method. Yuan D; Li Y; Li W; Li S Phys Chem Chem Phys; 2018 Nov; 20(45):28894-28902. PubMed ID: 30421758 [TBL] [Abstract][Full Text] [Related]
7. Low-lying structures and stabilities of large water clusters: investigation based on the combination of the AMOEBA potential and generalized energy-based fragmentation approach. Yang Z; Hua S; Hua W; Li S J Phys Chem A; 2010 Sep; 114(34):9253-61. PubMed ID: 20669931 [TBL] [Abstract][Full Text] [Related]
8. Understanding the role of intra- and intermolecular interactions in the formation of single- and double-helical structures of aromatic oligoamides: a computational study. Dong H; Hua S; Li S J Phys Chem A; 2009 Feb; 113(7):1335-42. PubMed ID: 19170580 [TBL] [Abstract][Full Text] [Related]
9. Highly accurate CCSD(T) and DFT-SAPT stabilization energies of H-bonded and stacked structures of the uracil dimer. Pitonák M; Riley KE; Neogrády P; Hobza P Chemphyschem; 2008 Aug; 9(11):1636-44. PubMed ID: 18574830 [TBL] [Abstract][Full Text] [Related]
10. Structures and Spectroscopic Properties of Large Molecules and Condensed-Phase Systems Predicted by Generalized Energy-Based Fragmentation Approach. Li W; Dong H; Ma J; Li S Acc Chem Res; 2021 Jan; 54(1):169-181. PubMed ID: 33350806 [TBL] [Abstract][Full Text] [Related]
11. Structures and properties of ionic crystals and condensed phase ionic liquids predicted with the generalized energy-based fragmentation method. Li Y; Wang D; Fu F; Xia Q; Li W; Li S J Comput Chem; 2022 Apr; 43(10):704-716. PubMed ID: 35213748 [TBL] [Abstract][Full Text] [Related]
12. Generalized Energy-Based Fragmentation Approach for Localized Excited States of Large Systems. Li W; Li Y; Lin R; Li S J Phys Chem A; 2016 Dec; 120(48):9667-9677. PubMed ID: 27933912 [TBL] [Abstract][Full Text] [Related]
13. Structures and IR/UV spectra of neutral and ionic phenol-Ar(n) cluster isomers (n ≤ 4): competition between hydrogen bonding and stacking. Schmies M; Patzer A; Fujii M; Dopfer O Phys Chem Chem Phys; 2011 Aug; 13(31):13926-41. PubMed ID: 21597606 [TBL] [Abstract][Full Text] [Related]
14. Linear scaling explicitly correlated MP2-F12 and ONIOM methods for the long-range interactions of the nanoscale clusters in methanol aqueous solutions. Li W J Chem Phys; 2013 Jan; 138(1):014106. PubMed ID: 23298027 [TBL] [Abstract][Full Text] [Related]
15. Cooperativity in long α- and 3(10)-helical polyalanines: both electrostatic and van der Waals interactions are essential. Hua S; Xu L; Li W; Li S J Phys Chem B; 2011 Oct; 115(39):11462-9. PubMed ID: 21859141 [TBL] [Abstract][Full Text] [Related]
16. Accurate prediction of lattice energies and structures of molecular crystals with molecular quantum chemistry methods. Fang T; Li W; Gu F; Li S J Chem Theory Comput; 2015 Jan; 11(1):91-8. PubMed ID: 26574207 [TBL] [Abstract][Full Text] [Related]
17. Generalized energy-based fragmentation approach for calculations of solvation energies of large systems. Liao K; Wang S; Li W; Li S Phys Chem Chem Phys; 2021 Sep; 23(35):19394-19401. PubMed ID: 34490874 [TBL] [Abstract][Full Text] [Related]
18. MP2, density functional theory, and molecular mechanical calculations of C-H...pi and hydrogen bond interactions in a cellulose-binding module-cellulose model system. Mohamed MN; Watts HD; Guo J; Catchmark JM; Kubicki JD Carbohydr Res; 2010 Aug; 345(12):1741-51. PubMed ID: 20580346 [TBL] [Abstract][Full Text] [Related]
19. Are fragment-based quantum chemistry methods applicable to medium-sized water clusters? Yuan D; Shen X; Li W; Li S Phys Chem Chem Phys; 2016 Jun; 18(24):16491-500. PubMed ID: 27263629 [TBL] [Abstract][Full Text] [Related]
20. Geometry optimizations and vibrational spectra of large molecules from a generalized energy-based fragmentation approach. Hua W; Fang T; Li W; Yu JG; Li S J Phys Chem A; 2008 Oct; 112(43):10864-72. PubMed ID: 18837491 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]