These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 2323978)

  • 1. Evaluation and optimization of the electromagnetic performance of interstitial antennas for hyperthermia.
    Iskander MF; Tumeh AM; Furse CM
    Int J Radiat Oncol Biol Phys; 1990 Apr; 18(4):895-902. PubMed ID: 2323978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional electromagnetic power deposition in tumors using interstitial antenna arrays.
    Furse CM; Iskander MF
    IEEE Trans Biomed Eng; 1989 Oct; 36(10):977-86. PubMed ID: 2793198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design optimization of interstitial antennas.
    Iskander MF; Tumeh AM
    IEEE Trans Biomed Eng; 1989 Feb; 36(2):238-46. PubMed ID: 2917769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A theoretical model for input impedance of interstitial microwave antennas with choke.
    Wong TZ; Trembly BS
    Int J Radiat Oncol Biol Phys; 1994 Feb; 28(3):673-82. PubMed ID: 8113111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of six microwave antennas for hyperthermia treatment of cancer: sar results for single antennas and arrays.
    Ryan TP
    Int J Radiat Oncol Biol Phys; 1991 Jul; 21(2):403-13. PubMed ID: 2061117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculations of heating patterns of an array of microwave interstitial antennas.
    Cherry PC; Iskander MF
    IEEE Trans Biomed Eng; 1993 Aug; 40(8):771-9. PubMed ID: 8258443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heating patterns generated by phase modulation of a hexagonal array of interstitial antennas.
    Zhang Y; Joines WT; Oleson JR
    IEEE Trans Biomed Eng; 1991 Jan; 38(1):92-7. PubMed ID: 2026438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SAR distributions in interstitial microwave antenna arrays with a single dipole displacement.
    Clibbon KL; McCowen A; Hand JW
    IEEE Trans Biomed Eng; 1993 Sep; 40(9):925-32. PubMed ID: 8288284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of improved microwave interstitial antennas for local hyperthermia.
    Sathiaseelan V; Leybovich L; Emami B; Stauffer P; Straube W
    Int J Radiat Oncol Biol Phys; 1991 Mar; 20(3):531-9. PubMed ID: 1995539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 915 MHz microwave interstitial hyperthermia. Part II: Array of phase-monitored antennas.
    Camart JC; Dubois L; Fabre JJ; Vanloot D; Chive M
    Int J Hyperthermia; 1993; 9(3):445-54. PubMed ID: 8515146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The characterization of semirigid coaxial antennae for interstitial and endocavitary microwave hyperthermia].
    Erb J; Klautke G; Seegenschmiedt HM; Engelbrecht R; Schaller G; Sauer R
    Strahlenther Onkol; 1994 Nov; 170(11):654-64. PubMed ID: 7974181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of heating patterns of a microwave interstitial antenna array at various insertion depths.
    Zhang Y; Joines WT; Oleson JR
    Int J Hyperthermia; 1991; 7(1):197-207. PubMed ID: 2051073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implantable helical coil microwave antenna for interstitial hyperthermia.
    Satoh T; Stauffer PR
    Int J Hyperthermia; 1988; 4(5):497-512. PubMed ID: 3392424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interstitial microwave transition from hyperthermia to ablation: historical perspectives and current trends in thermal therapy.
    Ryan TP; Turner PF; Hamilton B
    Int J Hyperthermia; 2010; 26(5):415-33. PubMed ID: 20597625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A theoretical evaluation of the performance of the Dartmouth IMAAH system to heat cylindrical and ellipsoidal tumour models.
    Mechling JA; Strohbehn JW; France LJ
    Int J Hyperthermia; 1991; 7(3):465-83. PubMed ID: 1919142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interstitial microwave treatment for cancer: historical basis and current techniques in antenna design and performance.
    Ryan TP; Brace CL
    Int J Hyperthermia; 2017 Feb; 33(1):3-14. PubMed ID: 27492859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of microwave interstitial antennas in the phantom with varying cross-section.
    Leybovich LB; Kurup RG
    Int J Radiat Oncol Biol Phys; 1993 Jan; 25(1):105-12. PubMed ID: 8416865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Research on the hyperthermia-therapy performances of invasive microwave antennas].
    Yang GS; Liu YH; Wang JQ
    Zhongguo Yi Liao Qi Xie Za Zhi; 2002 Mar; 26(3):170-1, 217. PubMed ID: 16104297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interstitial microwave hyperthermia and brachytherapy for malignancies of the vulva and vagina. I: Design and testing of a modified intracavitary obturator.
    Ryan TP; Taylor JH; Coughlin CT
    Int J Radiat Oncol Biol Phys; 1992; 23(1):189-99. PubMed ID: 1572816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiation patterns of dual concentric conductor microstrip antennas for superficial hyperthermia.
    Stauffer PR; Rossetto F; Leoncini M; Gentilli GB
    IEEE Trans Biomed Eng; 1998 May; 45(5):605-13. PubMed ID: 9581059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.