BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 23239992)

  • 41. The Drosophila gene disruption project: progress using transposons with distinctive site specificities.
    Bellen HJ; Levis RW; He Y; Carlson JW; Evans-Holm M; Bae E; Kim J; Metaxakis A; Savakis C; Schulze KL; Hoskins RA; Spradling AC
    Genetics; 2011 Jul; 188(3):731-43. PubMed ID: 21515576
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Temperature entrainment of the circadian cuticle deposition rhythm in Drosophila melanogaster.
    Ito C; Goto SG; Tomioka K; Numata H
    J Biol Rhythms; 2011 Feb; 26(1):14-23. PubMed ID: 21252362
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Feel the heat: The effect of temperature on development, behavior and central pattern generation in 3rd instar Calliphora vicina larvae.
    Hückesfeld S; Niederegger S; Schlegel P; Heinzel HG; Spiess R
    J Insect Physiol; 2011 Jan; 57(1):136-46. PubMed ID: 20965195
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ontogenetic stage-dependent effect of temperature on developmental and metabolic rates in a holometabolous insect.
    Folguera G; Mensch J; Muñoz JL; Ceballos SG; Hasson E; Bozinovic F
    J Insect Physiol; 2010 Nov; 56(11):1679-84. PubMed ID: 20615413
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Age- and temperature-dependent somatic mutation accumulation in Drosophila melanogaster.
    Garcia AM; Calder RB; Dollé ME; Lundell M; Kapahi P; Vijg J
    PLoS Genet; 2010 May; 6(5):e1000950. PubMed ID: 20485564
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Light and temperature control the contribution of specific DN1 neurons to Drosophila circadian behavior.
    Zhang Y; Liu Y; Bilodeau-Wentworth D; Hardin PE; Emery P
    Curr Biol; 2010 Apr; 20(7):600-5. PubMed ID: 20362449
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Repeated stress exposure results in a survival-reproduction trade-off in Drosophila melanogaster.
    Marshall KE; Sinclair BJ
    Proc Biol Sci; 2010 Mar; 277(1683):963-9. PubMed ID: 19939842
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synergic entrainment of Drosophila's circadian clock by light and temperature.
    Yoshii T; Vanin S; Costa R; Helfrich-Förster C
    J Biol Rhythms; 2009 Dec; 24(6):452-64. PubMed ID: 19926805
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Latitudinal variation in lifespan within species is explained by the metabolic theory of ecology.
    Munch SB; Salinas S
    Proc Natl Acad Sci U S A; 2009 Aug; 106(33):13860-4. PubMed ID: 19666552
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of environmental temperature on olfactory perception in Drosophila melanogaster.
    Riveron J; Boto T; Alcorta E
    J Insect Physiol; 2009 Oct; 55(10):943-51. PubMed ID: 19559705
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mifepristone-inducible LexPR system to drive and control gene expression in transgenic zebrafish.
    Emelyanov A; Parinov S
    Dev Biol; 2008 Aug; 320(1):113-21. PubMed ID: 18544450
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes.
    Markstein M; Pitsouli C; Villalta C; Celniker SE; Perrimon N
    Nat Genet; 2008 Apr; 40(4):476-83. PubMed ID: 18311141
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spatial and temporal control of gene expression in Drosophila using the inducible GeneSwitch GAL4 system. I. Screen for larval nervous system drivers.
    Nicholson L; Singh GK; Osterwalder T; Roman GW; Davis RL; Keshishian H
    Genetics; 2008 Jan; 178(1):215-34. PubMed ID: 18202369
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Temperature-dependent developmental plasticity of Drosophila neurons: cell-autonomous roles of membrane excitability, Ca2+ influx, and cAMP signaling.
    Peng IF; Berke BA; Zhu Y; Lee WH; Chen W; Wu CF
    J Neurosci; 2007 Nov; 27(46):12611-22. PubMed ID: 18003840
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Thermal disruption of mushroom body development and odor learning in Drosophila.
    Wang X; Green DS; Roberts SP; de Belle JS
    PLoS One; 2007 Nov; 2(11):e1125. PubMed ID: 17992254
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interactions between circadian neurons control temperature synchronization of Drosophila behavior.
    Busza A; Murad A; Emery P
    J Neurosci; 2007 Oct; 27(40):10722-33. PubMed ID: 17913906
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Integration of light and temperature in the regulation of circadian gene expression in Drosophila.
    Boothroyd CE; Wijnen H; Naef F; Saez L; Young MW
    PLoS Genet; 2007 Apr; 3(4):e54. PubMed ID: 17411344
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Alteration of Drosophila life span using conditional, tissue-specific expression of transgenes triggered by doxycyline or RU486/Mifepristone.
    Ford D; Hoe N; Landis GN; Tozer K; Luu A; Bhole D; Badrinath A; Tower J
    Exp Gerontol; 2007 Jun; 42(6):483-97. PubMed ID: 17349761
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hormetic effects of repeated exposures to cold at young age on longevity, aging and resistance to heat or cold shocks in Drosophila melanogaster.
    Le Bourg E
    Biogerontology; 2007 Aug; 8(4):431-44. PubMed ID: 17318365
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparative analysis of binary expression systems for directed gene expression in transgenic insects.
    Viktorinová I; Wimmer EA
    Insect Biochem Mol Biol; 2007 Mar; 37(3):246-54. PubMed ID: 17296499
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.