These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 23240023)

  • 1. CS-AMPPred: an updated SVM model for antimicrobial activity prediction in cysteine-stabilized peptides.
    Porto WF; Pires ÁS; Franco OL
    PLoS One; 2012; 7(12):e51444. PubMed ID: 23240023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou's general PseAAC.
    Meher PK; Sahu TK; Saini V; Rao AR
    Sci Rep; 2017 Feb; 7():42362. PubMed ID: 28205576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ensemble-AMPPred: Robust AMP Prediction and Recognition Using the Ensemble Learning Method with a New Hybrid Feature for Differentiating AMPs.
    Lertampaiporn S; Vorapreeda T; Hongsthong A; Thammarongtham C
    Genes (Basel); 2021 Jan; 12(2):. PubMed ID: 33494403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of antimicrobial peptides based on sequence alignment and support vector machine-pairwise algorithm utilizing LZ-complexity.
    Ng XY; Rosdi BA; Shahrudin S
    Biomed Res Int; 2015; 2015():212715. PubMed ID: 25802839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CAMP: a useful resource for research on antimicrobial peptides.
    Thomas S; Karnik S; Barai RS; Jayaraman VK; Idicula-Thomas S
    Nucleic Acids Res; 2010 Jan; 38(Database issue):D774-80. PubMed ID: 19923233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-AMPpred for in silico-aided predictions of antimicrobial peptides by integrating composition-based features.
    Singh O; Hsu WL; Su EC
    BMC Bioinformatics; 2021 Jul; 22(1):389. PubMed ID: 34330209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Antimicrobial Peptide Prediction Tool for Aquaculture Industries.
    Gautam A; Sharma A; Jaiswal S; Fatma S; Arora V; Iquebal MA; Nandi S; Sundaray JK; Jayasankar P; Rai A; Kumar D
    Probiotics Antimicrob Proteins; 2016 Sep; 8(3):141-9. PubMed ID: 27141850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AMAP: Hierarchical multi-label prediction of biologically active and antimicrobial peptides.
    Gull S; Shamim N; Minhas F
    Comput Biol Med; 2019 Apr; 107():172-181. PubMed ID: 30831306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IAMPE: NMR-Assisted Computational Prediction of Antimicrobial Peptides.
    Kavousi K; Bagheri M; Behrouzi S; Vafadar S; Atanaki FF; Lotfabadi BT; Ariaeenejad S; Shockravi A; Moosavi-Movahedi AA
    J Chem Inf Model; 2020 Oct; 60(10):4691-4701. PubMed ID: 32946226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive assessment of machine learning-based methods for predicting antimicrobial peptides.
    Xu J; Li F; Leier A; Xiang D; Shen HH; Marquez Lago TT; Li J; Yu DJ; Song J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33774670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AMPpred-EL: An effective antimicrobial peptide prediction model based on ensemble learning.
    Lv H; Yan K; Guo Y; Zou Q; Hesham AE; Liu B
    Comput Biol Med; 2022 Jul; 146():105577. PubMed ID: 35576825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ClassAMP: a prediction tool for classification of antimicrobial peptides.
    Joseph S; Karnik S; Nilawe P; Jayaraman VK; Idicula-Thomas S
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(5):1535-8. PubMed ID: 22732690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping membrane activity in undiscovered peptide sequence space using machine learning.
    Lee EY; Fulan BM; Wong GC; Ferguson AL
    Proc Natl Acad Sci U S A; 2016 Nov; 113(48):13588-13593. PubMed ID: 27849600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Screening for cysteine-stabilized scaffolds for developing proteolytic-resistant AMPs.
    Maximiano MR; Rezende SB; Rios TB; Leite ML; Vilas Boas LCP; da Cunha NB; Pires ÁDS; Cardoso MH; Franco OL
    Methods Enzymol; 2022; 663():67-98. PubMed ID: 35168798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of antimicrobial peptides based on sequence alignment and feature selection methods.
    Wang P; Hu L; Liu G; Jiang N; Chen X; Xu J; Zheng W; Li L; Tan M; Chen Z; Song H; Cai YD; Chou KC
    PLoS One; 2011 Apr; 6(4):e18476. PubMed ID: 21533231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. iAMP-CA2L: a new CNN-BiLSTM-SVM classifier based on cellular automata image for identifying antimicrobial peptides and their functional types.
    Xiao X; Shao YT; Cheng X; Stamatovic B
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34086856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The hydrophobicity in a chemically modified side-chain of cysteine residues of thanatin is related to antimicrobial activity against Micrococcus luteus.
    Orikasa Y; Ichinohe K; Saito J; Hashimoto S; Matsumoto K; Ooi T; Taguchi S
    Biosci Biotechnol Biochem; 2009 Jul; 73(7):1683-4. PubMed ID: 19584529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. InverPep: A database of invertebrate antimicrobial peptides.
    Gómez EA; Giraldo P; Orduz S
    J Glob Antimicrob Resist; 2017 Mar; 8():13-17. PubMed ID: 27888793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial activity predictors benchmarking analysis using shuffled and designed synthetic peptides.
    Porto WF; Pires ÁS; Franco OL
    J Theor Biol; 2017 Aug; 426():96-103. PubMed ID: 28536036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide Design Principles for Antimicrobial Applications.
    Torres MDT; Sothiselvam S; Lu TK; de la Fuente-Nunez C
    J Mol Biol; 2019 Aug; 431(18):3547-3567. PubMed ID: 30611750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.