These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 23240040)
1. The fermentation stress response protein Aaf1p/Yml081Wp regulates acetate production in Saccharomyces cerevisiae. Walkey CJ; Luo Z; Madilao LL; van Vuuren HJ PLoS One; 2012; 7(12):e51551. PubMed ID: 23240040 [TBL] [Abstract][Full Text] [Related]
2. Functional improvement of Saccharomyces cerevisiae to reduce volatile acidity in wine. Luo Z; Walkey CJ; Madilao LL; Measday V; Van Vuuren HJ FEMS Yeast Res; 2013 Aug; 13(5):485-94. PubMed ID: 23692528 [TBL] [Abstract][Full Text] [Related]
3. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: role of the cytosolic Mg(2+) and mitochondrial K(+) acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation. Remize F; Andrieu E; Dequin S Appl Environ Microbiol; 2000 Aug; 66(8):3151-9. PubMed ID: 10919763 [TBL] [Abstract][Full Text] [Related]
4. Functional analysis of the ALD gene family of Saccharomyces cerevisiae during anaerobic growth on glucose: the NADP+-dependent Ald6p and Ald5p isoforms play a major role in acetate formation. Saint-Prix F; Bönquist L; Dequin S Microbiology (Reading); 2004 Jul; 150(Pt 7):2209-2220. PubMed ID: 15256563 [TBL] [Abstract][Full Text] [Related]
6. Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes. Cambon B; Monteil V; Remize F; Camarasa C; Dequin S Appl Environ Microbiol; 2006 Jul; 72(7):4688-94. PubMed ID: 16820460 [TBL] [Abstract][Full Text] [Related]
7. Upregulation of ALD3 and GPD1 in Saccharomyces cerevisiae during Icewine fermentation. Pigeau GM; Inglis DL J Appl Microbiol; 2005; 99(1):112-25. PubMed ID: 15960671 [TBL] [Abstract][Full Text] [Related]
8. The ALD6 gene of Saccharomyces cerevisiae encodes a cytosolic, Mg(2+)-activated acetaldehyde dehydrogenase. Meaden PG; Dickinson FM; Mifsud A; Tessier W; Westwater J; Bussey H; Midgley M Yeast; 1997 Nov; 13(14):1319-27. PubMed ID: 9392076 [TBL] [Abstract][Full Text] [Related]
9. Construction of self-cloning, indigenous wine strains of Saccharomyces cerevisiae with enhanced glycerol and glutathione production. Hao RY; Liu YL; Wang ZY; Zhang BR Biotechnol Lett; 2012 Sep; 34(9):1711-7. PubMed ID: 22648686 [TBL] [Abstract][Full Text] [Related]
10. Decreasing acetic acid accumulation by a glycerol overproducing strain of Saccharomyces cerevisiae by deleting the ALD6 aldehyde dehydrogenase gene. Eglinton JM; Heinrich AJ; Pollnitz AP; Langridge P; Henschke PA; de Barros Lopes M Yeast; 2002 Mar; 19(4):295-301. PubMed ID: 11870853 [TBL] [Abstract][Full Text] [Related]
11. Production of low-alcohol Huangjiu with improved acidity and reduced levels of higher alcohols by fermentation with scarless ALD6 overexpression yeast. Zheng N; Jiang S; He Y; Chen Y; Zhang C; Guo X; Ma L; Xiao D Food Chem; 2020 Aug; 321():126691. PubMed ID: 32251922 [TBL] [Abstract][Full Text] [Related]
12. Acetaldehyde production in Saccharomyces cerevisiae wine yeasts. Romano P; Suzzi G; Turbanti L; Polsinelli M FEMS Microbiol Lett; 1994 May; 118(3):213-8. PubMed ID: 8020744 [TBL] [Abstract][Full Text] [Related]
13. Proteins involved in wine aroma compounds metabolism by a Saccharomyces cerevisiae flor-velum yeast strain grown in two conditions. Moreno-García J; García-Martínez T; Millán MC; Mauricio JC; Moreno J Food Microbiol; 2015 Oct; 51():1-9. PubMed ID: 26187821 [TBL] [Abstract][Full Text] [Related]
14. Participation of acetaldehyde dehydrogenases in ethanol and pyruvate metabolism of the yeast Saccharomyces cerevisiae. Boubekeur S; Camougrand N; Bunoust O; Rigoulet M; Guérin B Eur J Biochem; 2001 Oct; 268(19):5057-65. PubMed ID: 11589696 [TBL] [Abstract][Full Text] [Related]
15. Novel wine yeast with mutations in YAP1 that produce less acetic acid during fermentation. Cordente AG; Cordero-Bueso G; Pretorius IS; Curtin CD FEMS Yeast Res; 2013 Feb; 13(1):62-73. PubMed ID: 23146134 [TBL] [Abstract][Full Text] [Related]
16. Acetate ester formation in wine by mixed cultures in laboratory fermentations. Rojas V; Gil JV; Piñaga F; Manzanares P Int J Food Microbiol; 2003 Sep; 86(1-2):181-8. PubMed ID: 12892933 [TBL] [Abstract][Full Text] [Related]
17. Identification and disruption of the gene encoding the K(+)-activated acetaldehyde dehydrogenase of Saccharomyces cerevisiae. Tessier WD; Meaden PG; Dickinson FM; Midgley M FEMS Microbiol Lett; 1998 Jul; 164(1):29-34. PubMed ID: 9675847 [TBL] [Abstract][Full Text] [Related]
18. Saccharomyces cerevisiae Cytosolic Thioredoxins Control Glycolysis, Lipid Metabolism, and Protein Biosynthesis under Wine-Making Conditions. Picazo C; McDonagh B; Peinado J; Bárcena JA; Matallana E; Aranda A Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683739 [TBL] [Abstract][Full Text] [Related]
19. Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation. Bely M; Stoeckle P; Masneuf-Pomarède I; Dubourdieu D Int J Food Microbiol; 2008 Mar; 122(3):312-20. PubMed ID: 18262301 [TBL] [Abstract][Full Text] [Related]
20. Primary and Secondary Metabolic Effects of a Key Gene Deletion (Δ Chen Y; Wang Y; Liu M; Qu J; Yao M; Li B; Ding M; Liu H; Xiao W; Yuan Y Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683746 [No Abstract] [Full Text] [Related] [Next] [New Search]