These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 23240212)
1. Study of azo dye decolorization and determination of cathode microorganism profile in air-cathode microbial fuel cells. Kumru M; Eren H; Catal T; Bermek H; Akarsubaşi AT Environ Technol; 2012 Sep; 33(16-18):2167-75. PubMed ID: 23240212 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell. Sun J; Hu YY; Bi Z; Cao YQ Bioresour Technol; 2009 Jul; 100(13):3185-92. PubMed ID: 19269168 [TBL] [Abstract][Full Text] [Related]
3. Performance and microbial diversity of microbial fuel cells coupled with different cathode types during simultaneous azo dye decolorization and electricity generation. Hou B; Hu Y; Sun J Bioresour Technol; 2012 May; 111():105-10. PubMed ID: 22386629 [TBL] [Abstract][Full Text] [Related]
4. Enlargement of anode for enhanced simultaneous azo dye decolorization and power output in air-cathode microbial fuel cell. Sun J; Li Y; Hu Y; Hou B; Xu Q; Zhang Y; Li S Biotechnol Lett; 2012 Nov; 34(11):2023-9. PubMed ID: 22798039 [TBL] [Abstract][Full Text] [Related]
5. Effect of enrichment procedures on performance and microbial diversity of microbial fuel cell for Congo red decolorization and electricity generation. Hou B; Sun J; Hu Y Appl Microbiol Biotechnol; 2011 May; 90(4):1563-72. PubMed ID: 21468708 [TBL] [Abstract][Full Text] [Related]
6. Redox mediator enhanced simultaneous decolorization of azo dye and bioelectricity generation in air-cathode microbial fuel cell. Sun J; Li W; Li Y; Hu Y; Zhang Y Bioresour Technol; 2013 Aug; 142():407-14. PubMed ID: 23748088 [TBL] [Abstract][Full Text] [Related]
7. Assessment upon azo dye decolorization and bioelectricity generation by Proteus hauseri. Chen BY; Zhang MM; Chang CT; Ding Y; Lin KL; Chiou CS; Hsueh CC; Xu H Bioresour Technol; 2010 Jun; 101(12):4737-41. PubMed ID: 20156682 [TBL] [Abstract][Full Text] [Related]
8. Photocatalytically improved azo dye reduction in a microbial fuel cell with rutile-cathode. Ding H; Li Y; Lu A; Jin S; Quan C; Wang C; Wang X; Zeng C; Yan Y Bioresour Technol; 2010 May; 101(10):3500-5. PubMed ID: 20093012 [TBL] [Abstract][Full Text] [Related]
9. Azo dye treatment with simultaneous electricity production in an anaerobic-aerobic sequential reactor and microbial fuel cell coupled system. Li Z; Zhang X; Lin J; Han S; Lei L Bioresour Technol; 2010 Jun; 101(12):4440-5. PubMed ID: 20188540 [TBL] [Abstract][Full Text] [Related]
10. Further treatment of decolorization liquid of azo dye coupled with increased power production using microbial fuel cell equipped with an aerobic biocathode. Sun J; Bi Z; Hou B; Cao YQ; Hu YY Water Res; 2011 Jan; 45(1):283-91. PubMed ID: 20727567 [TBL] [Abstract][Full Text] [Related]
11. [Effects of Microbial Fuel Cell Coupled Constructed Wetland with Different Support Matrix and Cathode Areas on the Degradation of Azo Dye and Electricity Production]. Li XX; Cheng SC; Fang Z; Li XN Huan Jing Ke Xue; 2017 May; 38(5):1904-1910. PubMed ID: 29965095 [TBL] [Abstract][Full Text] [Related]
12. Microbial fuel cell with an azo-dye-feeding cathode. Liu L; Li FB; Feng CH; Li XZ Appl Microbiol Biotechnol; 2009 Nov; 85(1):175-83. PubMed ID: 19649629 [TBL] [Abstract][Full Text] [Related]
13. Sulfide-mediated azo dye degradation and microbial community analysis in a single-chamber air cathode microbial fuel cell. Dai Q; Zhang S; Liu H; Huang J; Li L Bioelectrochemistry; 2020 Feb; 131():107349. PubMed ID: 31476657 [TBL] [Abstract][Full Text] [Related]
14. Microbial fuel cells for azo dye treatment with electricity generation: a review. Solanki K; Subramanian S; Basu S Bioresour Technol; 2013 Mar; 131():564-71. PubMed ID: 23403060 [TBL] [Abstract][Full Text] [Related]
15. Microbial fuel cells as an electrical energy source for degradation followed by decolorization of Reactive Black 5 azo dye. Joksimović K; Kodranov I; Randjelović D; Slavković Beškoski L; Radulović J; Lješević M; Manojlović D; Beškoski VP Bioelectrochemistry; 2022 Jun; 145():108088. PubMed ID: 35189558 [TBL] [Abstract][Full Text] [Related]
16. Microbial community structure in a dual chamber microbial fuel cell fed with brewery waste for azo dye degradation and electricity generation. Miran W; Nawaz M; Kadam A; Shin S; Heo J; Jang J; Lee DS Environ Sci Pollut Res Int; 2015 Sep; 22(17):13477-85. PubMed ID: 25940481 [TBL] [Abstract][Full Text] [Related]
17. Decolorization of Reactive Black 5 and Reactive Blue 4 Dyes in Microbial Fuel Cells. Saba B; Christy AD; Park T; Yu Z; Li K; Tuovinen OH Appl Biochem Biotechnol; 2018 Dec; 186(4):1017-1033. PubMed ID: 29808454 [TBL] [Abstract][Full Text] [Related]
18. Influence of dye type and salinity on aerobic decolorization of azo dyes by microbial consortium and the community dynamics. Tan L; Ning S; Wang Y; Cao X Water Sci Technol; 2012; 65(8):1375-82. PubMed ID: 22466582 [TBL] [Abstract][Full Text] [Related]
19. Understanding interactive characteristics of bioelectricity generation and reductive decolorization using Proteus hauseri. Chen BY; Wang YM; Ng IS Bioresour Technol; 2011 Jan; 102(2):1159-65. PubMed ID: 20932743 [TBL] [Abstract][Full Text] [Related]
20. Decolorization of an azo dye Orange G in microbial fuel cells using Fe(II)-EDTA catalyzed persulfate. Niu CG; Wang Y; Zhang XG; Zeng GM; Huang DW; Ruan M; Li XW Bioresour Technol; 2012 Dec; 126():101-6. PubMed ID: 23073095 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]