BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 23240958)

  • 1. Relationships between lymphangiogenesis and angiogenesis during inflammation in rat mesentery microvascular networks.
    Sweat RS; Stapor PC; Murfee WL
    Lymphat Res Biol; 2012 Dec; 10(4):198-207. PubMed ID: 23240958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lysophosphatidic acid does not cause blood/lymphatic vessel plasticity in the rat mesentery culture model.
    Sweat RS; Azimi MS; Suarez-Martinez AD; Katakam P; Murfee WL
    Physiol Rep; 2016 Jul; 4(13):. PubMed ID: 27401461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An angiogenesis model for investigating multicellular interactions across intact microvascular networks.
    Stapor PC; Azimi MS; Ahsan T; Murfee WL
    Am J Physiol Heart Circ Physiol; 2013 Jan; 304(2):H235-45. PubMed ID: 23125212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lymphatic/Blood endothelial cell connections at the capillary level in adult rat mesentery.
    Robichaux JL; Tanno E; Rappleye JW; Ceballos M; Stallcup WB; Schmid-Schönbein GW; Murfee WL
    Anat Rec (Hoboken); 2010 Oct; 293(10):1629-38. PubMed ID: 20648570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Angiogenesis, lymphangiogenesis, and inflammation.
    Rockson SG
    Lymphat Res Biol; 2012 Dec; 10(4):151. PubMed ID: 23240955
    [No Abstract]   [Full Text] [Related]  

  • 6. Aging is associated with impaired angiogenesis, but normal microvascular network structure, in the rat mesentery.
    Sweat RS; Sloas DC; Stewart SA; Czarny-Ratajczak M; Baddoo M; Eastwood JR; Suarez-Martinez AD; Azimi MS; Burks HE; Chedister LO; Myers L; Murfee WL
    Am J Physiol Heart Circ Physiol; 2017 Feb; 312(2):H275-H284. PubMed ID: 27864233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. VEGF-C induces lymphangiogenesis and angiogenesis in the rat mesentery culture model.
    Sweat RS; Sloas DC; Murfee WL
    Microcirculation; 2014 Aug; 21(6):532-40. PubMed ID: 24654984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of class III β-tubulin as a marker of angiogenic perivascular cells.
    Stapor PC; Murfee WL
    Microvasc Res; 2012 Mar; 83(2):257-62. PubMed ID: 21958528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal distribution of neurovascular alignment in remodeling adult rat mesentery microvascular networks.
    Stapor PC; Murfee WL
    J Vasc Res; 2012; 49(4):299-308. PubMed ID: 22538935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunohistochemical and immunofluorescence expression profile of lymphatic endothelial cell markers in oral cancer.
    Chutipongpisit K; Parachuru VP; Friedlander LT; Hussaini HM; Rich AM
    Int J Exp Pathol; 2021 Dec; 102(6):268-278. PubMed ID: 34791715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Markers for microscopic imaging of lymphangiogenesis and angiogenesis.
    Baluk P; McDonald DM
    Ann N Y Acad Sci; 2008; 1131():1-12. PubMed ID: 18519955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of lymphangiogenesis in non-small cell lung cancer and its prognostic value.
    Sun JG; Wang Y; Chen ZT; Zhuo WL; Zhu B; Liao RX; Zhang SX
    J Exp Clin Cancer Res; 2009 Feb; 28(1):21. PubMed ID: 19216806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VEGF-C induced angiogenesis preferentially occurs at a distance from lymphangiogenesis.
    Benest AV; Harper SJ; Herttuala SY; Alitalo K; Bates DO
    Cardiovasc Res; 2008 May; 78(2):315-23. PubMed ID: 18065770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The lymphatic system in clinically localized urothelial carcinoma of the bladder: morphologic characteristics and predictive value.
    Bolenz C; Auer M; Ströbel P; Heinzelbecker J; Schubert C; Trojan L
    Urol Oncol; 2013 Nov; 31(8):1606-14. PubMed ID: 22503575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lymphatic vessels identified in failed corneal transplants with neovascularisation.
    Diamond MA; Chan SWS; Zhou X; Glinka Y; Girard E; Yucel Y; Gupta N
    Br J Ophthalmol; 2019 Mar; 103(3):421-427. PubMed ID: 30348644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Lymphatic Vessel Formation by Whole-Mount Immunofluorescence Staining.
    Wang J; Dong Y; Muthuchamy M; Zawieja DC; Peng X
    Methods Mol Biol; 2021; 2319():153-159. PubMed ID: 34331253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lymphatic-to-blood vessel transition in adult microvascular networks: A discovery made possible by a top-down approach to biomimetic model development.
    Azimi MS; Motherwell JM; Hodges NA; Rittenhouse GR; Majbour D; Porvasnik SL; Schmidt CE; Murfee WL
    Microcirculation; 2020 Feb; 27(2):e12595. PubMed ID: 31584728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell proliferation along vascular islands during microvascular network growth.
    Kelly-Goss MR; Winterer ER; Stapor PC; Yang M; Sweat RS; Stallcup WB; Schmid-Schönbein GW; Murfee WL
    BMC Physiol; 2012 Jun; 12():7. PubMed ID: 22720777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lymphangiogenesis by blind-ended vessel sprouting is concurrent with hemangiogenesis by vascular splitting.
    Parsons-Wingerter P; McKay TL; Leontiev D; Vickerman MB; Condrich TK; Dicorleto PE
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Mar; 288(3):233-47. PubMed ID: 16489601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lymphatic versus blood vascular endothelial growth factors and receptors in humans.
    Partanen TA; Paavonen K
    Microsc Res Tech; 2001 Oct; 55(2):108-21. PubMed ID: 11596156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.