BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 23241140)

  • 1. Estimation of cellulose crystallinity of lignocelluloses using near-IR FT-Raman spectroscopy and comparison of the Raman and Segal-WAXS methods.
    Agarwal UP; Reiner RR; Ralph SA
    J Agric Food Chem; 2013 Jan; 61(1):103-13. PubMed ID: 23241140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensing the structural differences in cellulose from apple and bacterial cell wall materials by Raman and FT-IR spectroscopy.
    Szymańska-Chargot M; Cybulska J; Zdunek A
    Sensors (Basel); 2011; 11(6):5543-60. PubMed ID: 22163913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of Syringyl Units in Wood Lignins by FT-Raman Spectroscopy.
    Agarwal UP; Ralph SA; Padmakshan D; Liu S; Foster CE
    J Agric Food Chem; 2019 Apr; 67(15):4367-4374. PubMed ID: 30916944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effects of spectral pretreatment on the prediction of crystallinity of wood cellulose using near infrared spectroscopy].
    Jiang ZH; Fei BH; Yang Z
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Mar; 27(3):435-8. PubMed ID: 17554892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of crystalline cellulose in lignocellulosic biomass using sum frequency generation (SFG) vibration spectroscopy and comparison with other analytical methods.
    Barnette AL; Lee C; Bradley LC; Schreiner EP; Park YB; Shin H; Cosgrove DJ; Park S; Kim SH
    Carbohydr Polym; 2012 Jul; 89(3):802-9. PubMed ID: 24750865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Cellulose and Lignocellulose Materials by Raman Spectroscopy: A Review of the Current Status.
    Agarwal UP
    Molecules; 2019 Apr; 24(9):. PubMed ID: 31035593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NOx and N2O precursors from biomass pyrolysis: role of cellulose, hemicellulose and lignin.
    Ren Q; Zhao C
    Environ Sci Technol; 2013 Aug; 47(15):8955-61. PubMed ID: 23848228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of Hemicellulose, Cellulose and Lignin in Moso Bamboo by Near Infrared Spectroscopy.
    Li X; Sun C; Zhou B; He Y
    Sci Rep; 2015 Nov; 5():17210. PubMed ID: 26601657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of cellulose crystallinity of sugarcane biomass using near infrared spectroscopy and multivariate analysis methods.
    Caliari ÍP; Barbosa MH; Ferreira SO; Teófilo RF
    Carbohydr Polym; 2017 Feb; 158():20-28. PubMed ID: 28024538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of durum wheat (Triticum durum) straw cellulose nanofibers by electrospinning.
    Montaño-Leyva B; Rodriguez-Felix F; Torres-Chávez P; Ramirez-Wong B; López-Cervantes J; Sanchez-Machado D
    J Agric Food Chem; 2011 Feb; 59(3):870-5. PubMed ID: 21207978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and evaluation of golpata fronds as pulping raw materials.
    Jahan MS; Chowdhury DA; Islam MK
    Bioresour Technol; 2006 Feb; 97(3):401-6. PubMed ID: 15927462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Prediction of Cellulose, Hemicellulose, Lignin and Ash Content of Four Miscanthus Bio-Energy Crops Using Near-Infrared Spectroscopy].
    Li XN; Fan XF; Wu JY; Zhang GF; Liu SY; Wu MJ; Cheng YB; Zhang N
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jan; 36(1):64-9. PubMed ID: 27228742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining Raman Imaging and Multivariate Analysis to Visualize Lignin, Cellulose, and Hemicellulose in the Plant Cell Wall.
    Zhang X; Chen S; Xu F
    J Vis Exp; 2017 Jun; (124):. PubMed ID: 28654048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra violet resonance Raman spectroscopy in lignin analysis: determination of characteristic vibrations of p-hydroxyphenyl, guaiacyl, and syringyl lignin structures.
    Saariaho AM; Jääskeläinen AS; Nuopponen M; Vuorinen T
    Appl Spectrosc; 2003 Jan; 57(1):58-66. PubMed ID: 14610937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of natural abundance stable isotopic ratios to indicate the presence of oxygen-containing chemical linkages between cellulose and lignin in plant cell walls.
    Zhou Y; Stuart-Williams H; Farquhar GD; Hocart CH
    Phytochemistry; 2010 Jun; 71(8-9):982-93. PubMed ID: 20362306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wood degradation under UV irradiation: A lignin characterization.
    Cogulet A; Blanchet P; Landry V
    J Photochem Photobiol B; 2016 May; 158():184-91. PubMed ID: 26974579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fourier-transform Raman spectroscopic study of a Neolithic waterlogged wood assemblage.
    Petrou M; Edwards HG; Janaway RC; Thompson GB; Wilson AS
    Anal Bioanal Chem; 2009 Dec; 395(7):2131-8. PubMed ID: 19834692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical and ultrastructural studies of lignocellulose biodegradation during Agaricus bisporus cultivation.
    Zhang R; Wang H; Liu Q; Ng T
    Biotechnol Appl Biochem; 2014; 61(2):208-16. PubMed ID: 24033911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid determination of syringyl: guaiacyl ratios using FT-Raman spectroscopy.
    Sun L; Varanasi P; Yang F; Loqué D; Simmons BA; Singh S
    Biotechnol Bioeng; 2012 Mar; 109(3):647-56. PubMed ID: 22012706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical imaging of lignocellulosic biomass by CARS microscopy.
    Pohling C; Brackmann C; Duarte A; Buckup T; Enejder A; Motzkus M
    J Biophotonics; 2014 Jan; 7(1-2):126-34. PubMed ID: 23836627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.