These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 23241140)
1. Estimation of cellulose crystallinity of lignocelluloses using near-IR FT-Raman spectroscopy and comparison of the Raman and Segal-WAXS methods. Agarwal UP; Reiner RR; Ralph SA J Agric Food Chem; 2013 Jan; 61(1):103-13. PubMed ID: 23241140 [TBL] [Abstract][Full Text] [Related]
2. Sensing the structural differences in cellulose from apple and bacterial cell wall materials by Raman and FT-IR spectroscopy. Szymańska-Chargot M; Cybulska J; Zdunek A Sensors (Basel); 2011; 11(6):5543-60. PubMed ID: 22163913 [TBL] [Abstract][Full Text] [Related]
3. Estimation of Syringyl Units in Wood Lignins by FT-Raman Spectroscopy. Agarwal UP; Ralph SA; Padmakshan D; Liu S; Foster CE J Agric Food Chem; 2019 Apr; 67(15):4367-4374. PubMed ID: 30916944 [TBL] [Abstract][Full Text] [Related]
4. [Effects of spectral pretreatment on the prediction of crystallinity of wood cellulose using near infrared spectroscopy]. Jiang ZH; Fei BH; Yang Z Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Mar; 27(3):435-8. PubMed ID: 17554892 [TBL] [Abstract][Full Text] [Related]
5. Quantification of crystalline cellulose in lignocellulosic biomass using sum frequency generation (SFG) vibration spectroscopy and comparison with other analytical methods. Barnette AL; Lee C; Bradley LC; Schreiner EP; Park YB; Shin H; Cosgrove DJ; Park S; Kim SH Carbohydr Polym; 2012 Jul; 89(3):802-9. PubMed ID: 24750865 [TBL] [Abstract][Full Text] [Related]
6. Analysis of Cellulose and Lignocellulose Materials by Raman Spectroscopy: A Review of the Current Status. Agarwal UP Molecules; 2019 Apr; 24(9):. PubMed ID: 31035593 [TBL] [Abstract][Full Text] [Related]
7. NOx and N2O precursors from biomass pyrolysis: role of cellulose, hemicellulose and lignin. Ren Q; Zhao C Environ Sci Technol; 2013 Aug; 47(15):8955-61. PubMed ID: 23848228 [TBL] [Abstract][Full Text] [Related]
8. Determination of Hemicellulose, Cellulose and Lignin in Moso Bamboo by Near Infrared Spectroscopy. Li X; Sun C; Zhou B; He Y Sci Rep; 2015 Nov; 5():17210. PubMed ID: 26601657 [TBL] [Abstract][Full Text] [Related]
9. Estimation of cellulose crystallinity of sugarcane biomass using near infrared spectroscopy and multivariate analysis methods. Caliari ÍP; Barbosa MH; Ferreira SO; Teófilo RF Carbohydr Polym; 2017 Feb; 158():20-28. PubMed ID: 28024538 [TBL] [Abstract][Full Text] [Related]
10. Preparation and characterization of durum wheat (Triticum durum) straw cellulose nanofibers by electrospinning. Montaño-Leyva B; Rodriguez-Felix F; Torres-Chávez P; Ramirez-Wong B; López-Cervantes J; Sanchez-Machado D J Agric Food Chem; 2011 Feb; 59(3):870-5. PubMed ID: 21207978 [TBL] [Abstract][Full Text] [Related]
11. Characterization and evaluation of golpata fronds as pulping raw materials. Jahan MS; Chowdhury DA; Islam MK Bioresour Technol; 2006 Feb; 97(3):401-6. PubMed ID: 15927462 [TBL] [Abstract][Full Text] [Related]
12. [Prediction of Cellulose, Hemicellulose, Lignin and Ash Content of Four Miscanthus Bio-Energy Crops Using Near-Infrared Spectroscopy]. Li XN; Fan XF; Wu JY; Zhang GF; Liu SY; Wu MJ; Cheng YB; Zhang N Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jan; 36(1):64-9. PubMed ID: 27228742 [TBL] [Abstract][Full Text] [Related]
13. Combining Raman Imaging and Multivariate Analysis to Visualize Lignin, Cellulose, and Hemicellulose in the Plant Cell Wall. Zhang X; Chen S; Xu F J Vis Exp; 2017 Jun; (124):. PubMed ID: 28654048 [TBL] [Abstract][Full Text] [Related]
14. Ultra violet resonance Raman spectroscopy in lignin analysis: determination of characteristic vibrations of p-hydroxyphenyl, guaiacyl, and syringyl lignin structures. Saariaho AM; Jääskeläinen AS; Nuopponen M; Vuorinen T Appl Spectrosc; 2003 Jan; 57(1):58-66. PubMed ID: 14610937 [TBL] [Abstract][Full Text] [Related]
15. The use of natural abundance stable isotopic ratios to indicate the presence of oxygen-containing chemical linkages between cellulose and lignin in plant cell walls. Zhou Y; Stuart-Williams H; Farquhar GD; Hocart CH Phytochemistry; 2010 Jun; 71(8-9):982-93. PubMed ID: 20362306 [TBL] [Abstract][Full Text] [Related]
16. Wood degradation under UV irradiation: A lignin characterization. Cogulet A; Blanchet P; Landry V J Photochem Photobiol B; 2016 May; 158():184-91. PubMed ID: 26974579 [TBL] [Abstract][Full Text] [Related]
17. Fourier-transform Raman spectroscopic study of a Neolithic waterlogged wood assemblage. Petrou M; Edwards HG; Janaway RC; Thompson GB; Wilson AS Anal Bioanal Chem; 2009 Dec; 395(7):2131-8. PubMed ID: 19834692 [TBL] [Abstract][Full Text] [Related]
18. Chemical and ultrastructural studies of lignocellulose biodegradation during Agaricus bisporus cultivation. Zhang R; Wang H; Liu Q; Ng T Biotechnol Appl Biochem; 2014; 61(2):208-16. PubMed ID: 24033911 [TBL] [Abstract][Full Text] [Related]
19. Rapid determination of syringyl: guaiacyl ratios using FT-Raman spectroscopy. Sun L; Varanasi P; Yang F; Loqué D; Simmons BA; Singh S Biotechnol Bioeng; 2012 Mar; 109(3):647-56. PubMed ID: 22012706 [TBL] [Abstract][Full Text] [Related]
20. Chemical imaging of lignocellulosic biomass by CARS microscopy. Pohling C; Brackmann C; Duarte A; Buckup T; Enejder A; Motzkus M J Biophotonics; 2014 Jan; 7(1-2):126-34. PubMed ID: 23836627 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]