These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 23241497)

  • 1. Application of quantum dot nanoparticles for potential non-invasive bio-imaging of mammalian spermatozoa.
    Feugang JM; Youngblood RC; Greene JM; Fahad AS; Monroe WA; Willard ST; Ryan PL
    J Nanobiotechnology; 2012 Dec; 10():45. PubMed ID: 23241497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-illuminating quantum dots for non-invasive bioluminescence imaging of mammalian gametes.
    Feugang JM; Youngblood RC; Greene JM; Willard ST; Ryan PL
    J Nanobiotechnology; 2015 Jun; 13():38. PubMed ID: 26040273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioluminescent magnetic nanoparticles as potential imaging agents for mammalian spermatozoa.
    Vasquez ES; Feugang JM; Willard ST; Ryan PL; Walters KB
    J Nanobiotechnology; 2016 Mar; 14():20. PubMed ID: 26984640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasensitive detection of cellular protein interactions using bioluminescence resonance energy transfer quantum dot-based nanoprobes.
    Quiñones GA; Miller SC; Bhattacharyya S; Sobek D; Stephan JP
    J Cell Biochem; 2012 Jul; 113(7):2397-405. PubMed ID: 22573556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved QD-BRET conjugates for detection and imaging.
    Xing Y; So MK; Koh AL; Sinclair R; Rao J
    Biochem Biophys Res Commun; 2008 Aug; 372(3):388-94. PubMed ID: 18468518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum dot-NanoLuc bioluminescence resonance energy transfer enables tumor imaging and lymph node mapping in vivo.
    Kamkaew A; Sun H; England CG; Cheng L; Liu Z; Cai W
    Chem Commun (Camb); 2016 May; 52(43):6997-7000. PubMed ID: 27157466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creating self-illuminating quantum dot conjugates.
    So MK; Loening AM; Gambhir SS; Rao J
    Nat Protoc; 2006; 1(3):1160-4. PubMed ID: 17406398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-illuminating in vivo lymphatic imaging using a bioluminescence resonance energy transfer quantum dot nano-particle.
    Kosaka N; Mitsunaga M; Bhattacharyya S; Miller SC; Choyke PL; Kobayashi H
    Contrast Media Mol Imaging; 2011; 6(1):55-9. PubMed ID: 21351373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioluminescence-Based Energy Transfer Using Semiconductor Quantum Dots as Acceptors.
    Samanta A; Medintz IL
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32455561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An enzymatically-sensitized sequential and concentric energy transfer relay self-assembled around semiconductor quantum dots.
    Samanta A; Walper SA; Susumu K; Dwyer CL; Medintz IL
    Nanoscale; 2015 May; 7(17):7603-14. PubMed ID: 25804284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bivalent response to long-term storage in liquid-preserved boar semen: a flow cytometric analysis.
    Henning H; Petrunkina AM; Harrison RA; Waberski D
    Cytometry A; 2012 Jul; 81(7):576-87. PubMed ID: 22573481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near infrared bioluminescence resonance energy transfer from firefly luciferase--quantum dot bionanoconjugates.
    Alam R; Karam LM; Doane TL; Zylstra J; Fontaine DM; Branchini BR; Maye MM
    Nanotechnology; 2014 Dec; 25(49):495606. PubMed ID: 25414169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptide-Conjugated Quantum Dots Act as the Target Marker for Human Pancreatic Carcinoma Cells.
    Li SL; Yang J; Lei XF; Zhang JN; Yang HL; Li K; Xu CQ
    Cell Physiol Biochem; 2016; 38(3):1121-8. PubMed ID: 26963791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BRET-Based Dual-Color (Visible/Near-Infrared) Molecular Imaging Using a Quantum Dot/EGFP-Luciferase Conjugate.
    Tsuboi S; Jin T
    Methods Mol Biol; 2022; 2525():47-59. PubMed ID: 35836060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the fertilizing ability of sex sorted boar spermatozoa.
    García EM; Vázquez JM; Parrilla I; Calvete JJ; Sanz L; Caballero I; Roca J; Vazquez JL; Martínez EA
    Theriogenology; 2007 Sep; 68(5):771-8. PubMed ID: 17662382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D in situ imaging of the female reproductive tract reveals molecular signatures of fertilizing spermatozoa in mice.
    Ded L; Hwang JY; Miki K; Shi HF; Chung JJ
    Elife; 2020 Oct; 9():. PubMed ID: 33078708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viability, acrosome morphology and fertilizing capacity of boar spermatozoa treated with strontium chloride.
    Okada K; Palmieri C; Della Salda L; Vackova I
    Zygote; 2008 Feb; 16(1):49-56. PubMed ID: 18221581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [In vivo imaging of ram spermatozoa in the ewe genital tract using fibered confocal microscopy].
    Druart X; Cognie J; Baril G; Clement F; Dacheux JL; Gatti JL
    Gynecol Obstet Fertil; 2011 Nov; 39(11):633-5. PubMed ID: 22000831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosensing and imaging based on bioluminescence resonance energy transfer.
    Xia Z; Rao J
    Curr Opin Biotechnol; 2009 Feb; 20(1):37-44. PubMed ID: 19216068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-illuminating quantum dot conjugates for in vivo imaging.
    So MK; Xu C; Loening AM; Gambhir SS; Rao J
    Nat Biotechnol; 2006 Mar; 24(3):339-43. PubMed ID: 16501578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.