BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 23241531)

  • 1. Generation and recovery of β-cell spheroids from step-growth PEG-peptide hydrogels.
    Raza A; Lin CC
    J Vis Exp; 2012 Dec; (70):e50081. PubMed ID: 23241531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids.
    Lin CC; Raza A; Shih H
    Biomaterials; 2011 Dec; 32(36):9685-95. PubMed ID: 21924490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving gelation efficiency and cytocompatibility of visible light polymerized thiol-norbornene hydrogels via addition of soluble tyrosine.
    Shih H; Liu HY; Lin CC
    Biomater Sci; 2017 Feb; 5(3):589-599. PubMed ID: 28174779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-linking and degradation of step-growth hydrogels formed by thiol-ene photoclick chemistry.
    Shih H; Lin CC
    Biomacromolecules; 2012 Jul; 13(7):2003-12. PubMed ID: 22708824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoclick Hydrogels Prepared from Functionalized Cyclodextrin and Poly(ethylene glycol) for Drug Delivery and in Situ Cell Encapsulation.
    Shih H; Lin CC
    Biomacromolecules; 2015 Jul; 16(7):1915-23. PubMed ID: 25996903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of matrix degradation and functionality on cell survival and morphogenesis in PEG-based hydrogels.
    Raza A; Lin CC
    Macromol Biosci; 2013 Aug; 13(8):1048-58. PubMed ID: 23776086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crosslinker length dictates step-growth hydrogel network formation dynamics and allows rapid on-chip photoencapsulation.
    Jiang Z; Shaha R; McBride R; Jiang K; Tang M; Xu B; Goroncy AK; Frick C; Oakey J
    Biofabrication; 2020 Apr; 12(3):035006. PubMed ID: 32160605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the crosslinking kinetics of multi-arm poly(ethylene glycol) hydrogels formed via Michael-type addition.
    Kim J; Kong YP; Niedzielski SM; Singh RK; Putnam AJ; Shikanov A
    Soft Matter; 2016 Feb; 12(7):2076-85. PubMed ID: 26750719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulating hepatocellular carcinoma cell fate in orthogonally cross-linked hydrogels.
    Lin TY; Ki CS; Lin CC
    Biomaterials; 2014 Aug; 35(25):6898-906. PubMed ID: 24857292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visible-light-mediated thiol-ene hydrogelation using eosin-Y as the only photoinitiator.
    Shih H; Lin CC
    Macromol Rapid Commun; 2013 Feb; 34(3):269-73. PubMed ID: 23386583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucagon-like peptide-1 functionalized PEG hydrogels promote survival and function of encapsulated pancreatic beta-cells.
    Lin CC; Anseth KS
    Biomacromolecules; 2009 Sep; 10(9):2460-7. PubMed ID: 19586041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties.
    Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN
    Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of highly elastomeric and property-tailorable poly(glycerol sebacate)-co-poly(ethylene glycol) hydrogels through thiol-norbornene photochemistry.
    Tsai YT; Chang CW; Yeh YC
    Biomater Sci; 2020 Sep; 8(17):4728-4738. PubMed ID: 32705102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modular and Adaptable Tumor Niche Prepared from Visible Light Initiated Thiol-Norbornene Photopolymerization.
    Shih H; Greene T; Korc M; Lin CC
    Biomacromolecules; 2016 Dec; 17(12):3872-3882. PubMed ID: 27936722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatically prepared redox-responsive hydrogels as potent matrices for hepatocellular carcinoma cell spheroid formation.
    Moriyama K; Naito S; Wakabayashi R; Goto M; Kamiya N
    Biotechnol J; 2016 Nov; 11(11):1452-1460. PubMed ID: 27617786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orthogonally Crosslinked Gelatin-Norbornene Hydrogels for Biomedical Applications.
    Lin CC; Frahm E; Afolabi FO
    Macromol Biosci; 2024 Feb; 24(2):e2300371. PubMed ID: 37748778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-cell communication mimicry with poly(ethylene glycol) hydrogels for enhancing beta-cell function.
    Lin CC; Anseth KS
    Proc Natl Acad Sci U S A; 2011 Apr; 108(16):6380-5. PubMed ID: 21464290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gelation Kinetics and Mechanical Properties of Thiol-Tetrazole Methylsulfone Hydrogels Designed for Cell Encapsulation.
    de Miguel-Jiménez A; Ebeling B; Paez JI; Fink-Straube C; Pearson S; Del Campo A
    Macromol Biosci; 2023 Feb; 23(2):e2200419. PubMed ID: 36457236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative cytocompatibility of multiple candidate cell types to photoencapsulation in PEGNB/PEGDA macroscale or microscale hydrogels.
    Jiang Z; Jiang K; McBride R; Oakey JS
    Biomed Mater; 2018 Oct; 13(6):065012. PubMed ID: 30191888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thiol-ene photopolymerizations provide a facile method to encapsulate proteins and maintain their bioactivity.
    McCall JD; Anseth KS
    Biomacromolecules; 2012 Aug; 13(8):2410-7. PubMed ID: 22741550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.