BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 23241569)

  • 1. Stair ascent with an innovative microprocessor-controlled exoprosthetic knee joint.
    Bellmann M; Schmalz T; Ludwigs E; Blumentritt S
    Biomed Tech (Berl); 2012 Dec; 57(6):435-44. PubMed ID: 23241569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gait asymmetry of transfemoral amputees using mechanical and microprocessor-controlled prosthetic knees.
    Kaufman KR; Frittoli S; Frigo CA
    Clin Biomech (Bristol, Avon); 2012 Jun; 27(5):460-5. PubMed ID: 22221344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of stair ascent and descent with a powered transfemoral prosthesis.
    Lawson BE; Varol HA; Huff A; Erdemir E; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):466-73. PubMed ID: 23096120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immediate effects of a new microprocessor-controlled prosthetic knee joint: a comparative biomechanical evaluation.
    Bellmann M; Schmalz T; Ludwigs E; Blumentritt S
    Arch Phys Med Rehabil; 2012 Mar; 93(3):541-9. PubMed ID: 22373937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complementary limb motion estimation for the control of active knee prostheses.
    Vallery H; Burgkart R; Hartmann C; Mitternacht J; Riener R; Buss M
    Biomed Tech (Berl); 2011 Feb; 56(1):45-51. PubMed ID: 21303189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crossover study of amputee stair ascent and descent biomechanics using Genium and C-Leg prostheses with comparison to non-amputee control.
    Lura DJ; Wernke MW; Carey SL; Kahle JT; Miro RM; Highsmith MJ
    Gait Posture; 2017 Oct; 58():103-107. PubMed ID: 28763712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A running controller for a powered transfemoral prosthesis.
    Huff AM; Lawson BE; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4168-71. PubMed ID: 23366846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A preliminary investigation of powered prostheses for improved walking biomechanics in bilateral transfemoral amputees.
    Lawson BE; Huff A; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4164-7. PubMed ID: 23366845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait and balance of transfemoral amputees using passive mechanical and microprocessor-controlled prosthetic knees.
    Kaufman KR; Levine JA; Brey RH; Iverson BK; McCrady SK; Padgett DJ; Joyner MJ
    Gait Posture; 2007 Oct; 26(4):489-93. PubMed ID: 17869114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does a microprocessor-controlled prosthetic knee affect stair ascent strategies in persons with transfemoral amputation?
    Aldridge Whitehead JM; Wolf EJ; Scoville CR; Wilken JM
    Clin Orthop Relat Res; 2014 Oct; 472(10):3093-101. PubMed ID: 24515402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gait Analysis of Transfemoral Amputees: Errors in Inverse Dynamics Are Substantial and Depend on Prosthetic Design.
    Dumas R; Branemark R; Frossard L
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):679-685. PubMed ID: 28113632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of function, performance, and preference as transfemoral amputees transition from mechanical to microprocessor control of the prosthetic knee.
    Hafner BJ; Willingham LL; Buell NC; Allyn KJ; Smith DG
    Arch Phys Med Rehabil; 2007 Feb; 88(2):207-17. PubMed ID: 17270519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Swing Phase Control of Semi-Active Prosthetic Knee Using Neural Network Predictive Control With Particle Swarm Optimization.
    Ekkachai K; Nilkhamhang I
    IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1169-1178. PubMed ID: 26829798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional added value of microprocessor-controlled knee joints in daily life performance of Medicare Functional Classification Level-2 amputees.
    Theeven P; Hemmen B; Rings F; Meys G; Brink P; Smeets R; Seelen H
    J Rehabil Med; 2011 Oct; 43(10):906-15. PubMed ID: 21947182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Locomotor Adaptation by Transtibial Amputees Walking With an Experimental Powered Prosthesis Under Continuous Myoelectric Control.
    Huang S; Wensman JP; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):573-81. PubMed ID: 26057851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the gait performance of non-fluid-based swing-phase control mechanisms in transfemoral prostheses.
    Furse A; Cleghorn W; Andrysek J
    IEEE Trans Biomed Eng; 2011 Aug; 58(8):. PubMed ID: 21592917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benefits of the Genium microprocessor controlled prosthetic knee on ambulation, mobility, activities of daily living and quality of life: a systematic literature review.
    Mileusnic MP; Rettinger L; Highsmith MJ; Hahn A
    Disabil Rehabil Assist Technol; 2021 Jul; 16(5):453-464. PubMed ID: 31469023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control and Evaluation of a Powered Transfemoral Prosthesis for Stair Ascent.
    Ledoux ED; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):917-924. PubMed ID: 28113346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and quantitative evaluation of a stance-phase controlled prosthetic knee joint for children.
    Andrysek J; Naumann S; Cleghorn WL
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):437-43. PubMed ID: 16425824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The influence of the C-leg knee-shin system from the Otto Bock Company in the care of above-knee amputees. A clinical-biomechanical study to define indications].
    Wetz HH; Hafkemeyer U; Drerup B
    Orthopade; 2005 Apr; 34(4):298, 300-314, 316-9. PubMed ID: 15812621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.