These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 23241570)

  • 1. Assistive acting movement therapy devices with pneumatic rotary-type soft actuators.
    Wilkening A; Baiden D; Ivlev O
    Biomed Tech (Berl); 2012 Dec; 57(6):445-56. PubMed ID: 23241570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assistive control of motion therapy devices based on pneumatic soft-actuators with rotary elastic chambers.
    Wilkening A; Baiden D; Ivlev O
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975361. PubMed ID: 22275565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive model-based assistive control for pneumatic direct driven soft rehabilitation robots.
    Wilkening A; Ivlev O
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650354. PubMed ID: 24187173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assistive Control System for Upper Limb Rehabilitation Robot.
    Chen SH; Lien WM; Wang WW; Lee GD; Hsu LC; Lee KW; Lin SY; Lin CH; Fu LC; Lai JS; Luh JJ; Chen WS
    IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1199-1209. PubMed ID: 26929055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MotionTherapy@Home - First results of a clinical study with a novel robotic device for automated locomotion therapy at home.
    Rupp R; Plewa H; Schuld C; Gerner HJ; Hofer EP; Knestel M
    Biomed Tech (Berl); 2011 Feb; 56(1):11-21. PubMed ID: 21080894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human-robot-interaction control for orthoses with pneumatic soft-actuators--concept and initial trails.
    Baiden D; Ivlev O
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650353. PubMed ID: 24187172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury.
    Aoyagi D; Ichinose WE; Harkema SJ; Reinkensmeyer DJ; Bobrow JE
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):387-400. PubMed ID: 17894271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robot-assisted humanized passive rehabilitation training based on online assessment and regulation.
    Pan L; Song A; Duan S; Xu B
    Biomed Mater Eng; 2015; 26 Suppl 1():S655-64. PubMed ID: 26406061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developing a multi-joint upper limb exoskeleton robot for diagnosis, therapy, and outcome evaluation in neurorehabilitation.
    Ren Y; Kang SH; Park HS; Wu YN; Zhang LQ
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):490-9. PubMed ID: 23096119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Standing-up robot: an assistive rehabilitative device for training and assessment.
    Kamnik R; Bajd T
    J Med Eng Technol; 2004; 28(2):74-80. PubMed ID: 14965861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordinated control of assistive robotic devices for activities of daily living tasks.
    Erol D; Sarkar N
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):278-85. PubMed ID: 18586607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An advanced rehabilitation robotic system for augmenting healthcare.
    Hu J; Lim YJ; Ding Y; Paluska D; Solochek A; Laffery D; Bonato P; Marchessault R
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2073-6. PubMed ID: 22254745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy.
    Sugar TG; He J; Koeneman EJ; Koeneman JB; Herman R; Huang H; Schultz RS; Herring DE; Wanberg J; Balasubramanian S; Swenson P; Ward JA
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):336-46. PubMed ID: 17894266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motorized CPM/CAM physiotherapy device with sliding-mode Fuzzy Neural Network control loop.
    Ho HJ; Chen TC
    Comput Methods Programs Biomed; 2009 Nov; 96(2):96-107. PubMed ID: 19439391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hiding robot inertia using resonance.
    Vallery H; Duschau-Wicke A; Riener R
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1271-4. PubMed ID: 21095916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human voluntary activity integration in the control of a standing-up rehabilitation robot: a simulation study.
    Kamnik R; Bajd T
    Med Eng Phys; 2007 Nov; 29(9):1019-29. PubMed ID: 17098459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An inductive tongue computer interface for control of computers and assistive devices.
    Struijk LN
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 2):2594-7. PubMed ID: 17152438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. VI.3. Rehabilitation robotics.
    Munih M; Bajd T
    Stud Health Technol Inform; 2010; 152():353-66. PubMed ID: 20407204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soft artificial tactile sensors for the measurement of human-robot interaction in the rehabilitation of the lower limb.
    De Rossi SM; Vitiello N; Lenzi T; Ronsse R; Koopman B; Persichetti A; Giovacchini F; Vecchi F; Ijspeert AJ; van der Kooij H; Carrozza MC
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1279-82. PubMed ID: 21095918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of a pneumatic orthosis for upper extremity stroke rehabilitation.
    Wolbrecht ET; Leavitt J; Reinkensmeyer DJ; Bobrow JE
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2687-93. PubMed ID: 17946132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.