These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 23241819)

  • 1. The effects of season and soil type on microbial degradation of gasoline residues from incendiary devices.
    Turner DA; Goodpaster JV
    Anal Bioanal Chem; 2013 Feb; 405(5):1593-9. PubMed ID: 23241819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial degradation of gasoline in soil: Effect of season of sampling.
    Turner DA; Pichtel J; Rodenas Y; McKillip J; Goodpaster JV
    Forensic Sci Int; 2015 Jun; 251():69-76. PubMed ID: 25863700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of microbial degradation on ignitable liquids.
    Turner DA; Goodpaster JV
    Anal Bioanal Chem; 2009 May; 394(1):363-71. PubMed ID: 19205675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preserving ignitable liquid residues on soil using Triclosan as an anti-microbial agent.
    Turner DA; Goodpaster JV
    Forensic Sci Int; 2014 Jun; 239():86-91. PubMed ID: 24769222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing the effects of weathering and microbial degradation on gasoline using principal components analysis.
    Turner DA; Goodpaster JV
    J Forensic Sci; 2012 Jan; 57(1):64-9. PubMed ID: 22150510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Comprehensive Study of the Alteration of Ignitable Liquids by Weathering and Microbial Degradation.
    Turner DA; Williams M; Sigman MA; Goodpaster JV
    J Forensic Sci; 2018 Jan; 63(1):58-65. PubMed ID: 28464314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evaluation of the extent of transporting or "tracking" an identifiable ignitable liquid (gasoline) throughout fire scenes during the investigative process.
    Armstrong A; Babrauskas V; Holmes DL; Martin C; Powell R; Riggs S; Young LD
    J Forensic Sci; 2004 Jul; 49(4):741-8. PubMed ID: 15317188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of biodegradation capacities of environmental microflorae for diesel oil by comprehensive two-dimensional gas chromatography.
    Penet S; Vendeuvre C; Bertoncini F; Marchal R; Monot F
    Biodegradation; 2006 Dec; 17(6):577-85. PubMed ID: 16477350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in the microbial community during bioremediation of gasoline-contaminated soil.
    Leal AJ; Rodrigues EM; Leal PL; Júlio ADL; Fernandes RCR; Borges AC; Tótola MR
    Braz J Microbiol; 2017; 48(2):342-351. PubMed ID: 28034596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of acidified ignitable liquid residues in fire debris by solid-phase microextraction with gas chromatography and mass spectrometry.
    Martín-Alberca C; García-Ruiz C; Delémont O
    J Sep Sci; 2015 Sep; 38(18):3218-3227. PubMed ID: 26179121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic capacities of soil microflorae for gasoline degradation.
    Solano-Serena F; Marchal R; Blanchet D; Vandecasteele JP
    Biodegradation; 1998; 9(5):319-26. PubMed ID: 10192893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural attenuation of diesel aliphatic hydrocarbons in contaminated agricultural soil.
    Serrano A; Gallego M; González JL; Tejada M
    Environ Pollut; 2008 Feb; 151(3):494-502. PubMed ID: 17555854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance.
    Alisi C; Musella R; Tasso F; Ubaldi C; Manzo S; Cremisini C; Sprocati AR
    Sci Total Environ; 2009 Apr; 407(8):3024-32. PubMed ID: 19201450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of different organic amendments in a gasoline contaminated soil: effect on soil microbial properties.
    Tejada M; Gonzalez JL; Hernandez MT; Garcia C
    Bioresour Technol; 2008 May; 99(8):2872-80. PubMed ID: 17662598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of bioventing on a gasoline-ethanol contaminated undisturbed residual soil.
    Osterreicher-Cunha P; Vargas Edo A; Guimarães JR; de Campos TM; Nunes CM; Costa A; Antunes Fdos S; da Silva MI; Mano DM
    J Hazard Mater; 2004 Jul; 110(1-3):63-76. PubMed ID: 15177727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eco-toxicological studies of diesel and biodiesel fuels in aerated soil.
    Lapinskiene A; Martinkus P; Rebzdaite V
    Environ Pollut; 2006 Aug; 142(3):432-7. PubMed ID: 16338045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial degradation of ignitable liquids on building materials.
    Hutches K
    Forensic Sci Int; 2013 Oct; 232(1-3):e38-41. PubMed ID: 24008200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial in situ degradation of aromatic hydrocarbons in a contaminated aquifer monitored by carbon isotope fractionation.
    Richnow HH; Annweiler E; Michaelis W; Meckenstock RU
    J Contam Hydrol; 2003 Aug; 65(1-2):101-20. PubMed ID: 12855203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioremediation of oil-contaminated soil using Candida catenulata and food waste.
    Joo HS; Ndegwa PM; Shoda M; Phae CG
    Environ Pollut; 2008 Dec; 156(3):891-6. PubMed ID: 18620787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of in-situ ozonation on indigenous microorganisms in diesel contaminated soil: survival and regrowth.
    Jung H; Ahn Y; Choi H; Kim IS
    Chemosphere; 2005 Nov; 61(7):923-32. PubMed ID: 16257315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.