These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 2324223)

  • 1. Physicochemical studies of biologically active peptides by low-temperature reversed-phase high-performance liquid chromatography.
    Henderson DE; Mello JA
    J Chromatogr; 1990 Jan; 499():79-88. PubMed ID: 2324223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low temperature high-performance liquid chromatography of cis-trans proline dipeptides.
    Henderson DE; Horváth C
    J Chromatogr; 1986 Oct; 368(2):203-13. PubMed ID: 3782366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-performance liquid chromatographic separation of cis-trans isomers of proline-containing peptides. II. Fractionation in different cyclodextrin systems.
    Friebe S; Hartrodt B; Neubert K; Krauss GJ
    J Chromatogr A; 1994 Feb; 661(1-2):7-12. PubMed ID: 8136914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversed-phase chromatographic method development for peptide separations using the computer simulation program ProDigest-LC.
    Mant CT; Burke TW; Zhou NE; Parker JM; Hodges RS
    J Chromatogr; 1989 Dec; 485():365-82. PubMed ID: 2625444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitive determination of N-terminal prolyl peptides by high-performance liquid chromatography with laser-induced fluorescence detection.
    Toyo'oka T; Ishibashi M; Terao T
    J Chromatogr A; 1994 Feb; 661(1-2):105-12. PubMed ID: 8136900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the isomeric composition of the proline peptide bond in an angiotensin-converting enzyme inhibitor using capillary electrophoresis.
    Stellwagen E; Ledger R
    Anal Biochem; 2003 Oct; 321(2):167-73. PubMed ID: 14511680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic separation of medium-sized biologically active peptides by high-performance liquid chromatography.
    Mabuchi H; Nakahashi H
    J Chromatogr; 1981 Aug; 213(2):275-86. PubMed ID: 7276115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer simulation of high-performance liquid chromatographic separations of peptide and protein digests for development of size-exclusion, ion-exchange and reversed-phase chromatographic methods.
    Hodges RS; Parker JM; Mant CT; Sharma RR
    J Chromatogr; 1988 Dec; 458():147-67. PubMed ID: 3235631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation of opioid peptides utilizing high performance liquid chromatography.
    Lewis RV; Stein S; Udenfriend S
    Int J Pept Protein Res; 1979 May; 13(5):493-7. PubMed ID: 38218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of cinchona-sulfonate-based chiral zwitterionic ion exchangers for the separation of proline-containing dipeptide rotamers and determination of on-column isomerization parameters from dynamic elution profiles.
    Wernisch S; Trapp O; Lindner W
    Anal Chim Acta; 2013 Sep; 795():88-98. PubMed ID: 23998542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Displacement chromatography with on-column isomerization.
    Rathore AS; Horváth C
    J Chromatogr A; 1997 Nov; 787(1-2):1-12. PubMed ID: 9408992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved separation of triglycerides at low temperatures by reversed-phase liquid chromatography.
    Jensen GW
    J Chromatogr; 1981 Jan; 204():407-11. PubMed ID: 7217266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on cyclic peptides related to gratisin by reversed-phase high-performance liquid chromatography.
    Tamaki M; Akabori S; Muramatsu I
    J Chromatogr; 1992 Feb; 574(1):65-70. PubMed ID: 1629289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The challenges of the analysis of basic compounds by high performance liquid chromatography: some possible approaches for improved separations.
    McCalley DV
    J Chromatogr A; 2010 Feb; 1217(6):858-80. PubMed ID: 20031138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Counter-current chromatographic estimation of hydrophobicity of Z-(cis) and E-(trans) enalapril and kinetics of cis/trans isomerization.
    Shoji A; Yanagida A; Shindo H; Ito Y; Shibusawa Y
    J Chromatogr A; 2007 Jul; 1157(1-2):101-7. PubMed ID: 17467722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance liquid chromatography separation of cis-trans anthocyanin isomers from wild Lycium ruthenicum Murr. employing a mixed-mode reversed-phase/strong anion-exchange stationary phase.
    Jin H; Liu Y; Guo Z; Yang F; Wang J; Li X; Peng X; Liang X
    J Agric Food Chem; 2015 Jan; 63(2):500-8. PubMed ID: 25539032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of the cis-trans isomerization of enalapril by reversed-phase liquid chromatography.
    Trabelsi H; Bouabdallah S; Sabbah S; Raouafi F; Bouzouita K
    J Chromatogr A; 2000 Feb; 871(1-2):189-99. PubMed ID: 10735299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rationalisation of unusual changes in efficiency and retention with temperature shown for bases in reversed-phase high-performance liquid chromatography at intermediate pH.
    Buckenmaier SM; McCalley DV; Euerby MR
    J Chromatogr A; 2004 Dec; 1060(1-2):117-26. PubMed ID: 15628154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The behaviour of peptides on reverse-phase supports during high-pressure liquid chromatography.
    Wilson KJ; Honegger A; Stötzel RP; Hughes GJ
    Biochem J; 1981 Oct; 199(1):31-41. PubMed ID: 7337711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of high-performance liquid chromatographic peptide separations with alternative mobile and stationary phases.
    Young PM; Wheat TE
    J Chromatogr; 1990 Jul; 512():273-81. PubMed ID: 2172265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.