These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 23242809)
1. The mTORC1 inhibitor everolimus prevents and treats Eμ-Myc lymphoma by restoring oncogene-induced senescence. Wall M; Poortinga G; Stanley KL; Lindemann RK; Bots M; Chan CJ; Bywater MJ; Kinross KM; Astle MV; Waldeck K; Hannan KM; Shortt J; Smyth MJ; Lowe SW; Hannan RD; Pearson RB; Johnstone RW; McArthur GA Cancer Discov; 2013 Jan; 3(1):82-95. PubMed ID: 23242809 [TBL] [Abstract][Full Text] [Related]
2. Mammalian target of rapamycin complex 1 (mTORC1) enhances bortezomib-induced death in tuberous sclerosis complex (TSC)-null cells by a c-MYC-dependent induction of the unfolded protein response. Babcock JT; Nguyen HB; He Y; Hendricks JW; Wek RC; Quilliam LA J Biol Chem; 2013 May; 288(22):15687-98. PubMed ID: 23612979 [TBL] [Abstract][Full Text] [Related]
4. Pharmacological inhibition of mTORC1 but not mTORC2 protects against human disc cellular apoptosis, senescence, and extracellular matrix catabolism through Akt and autophagy induction. Kakiuchi Y; Yurube T; Kakutani K; Takada T; Ito M; Takeoka Y; Kanda Y; Miyazaki S; Kuroda R; Nishida K Osteoarthritis Cartilage; 2019 Jun; 27(6):965-976. PubMed ID: 30716534 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of mammalian target of rapamycin signaling potentiates the effects of all-trans retinoic acid to induce growth arrest and differentiation of human acute myelogenous leukemia cells. Nishioka C; Ikezoe T; Yang J; Gery S; Koeffler HP; Yokoyama A Int J Cancer; 2009 Oct; 125(7):1710-20. PubMed ID: 19507250 [TBL] [Abstract][Full Text] [Related]
6. Combined loss of PUMA and p21 accelerates c-MYC-driven lymphoma development considerably less than loss of one allele of p53. Valente LJ; Grabow S; Vandenberg CJ; Strasser A; Janic A Oncogene; 2016 Jul; 35(29):3866-71. PubMed ID: 26640149 [TBL] [Abstract][Full Text] [Related]
7. Myc and mTOR converge on a common node in protein synthesis control that confers synthetic lethality in Myc-driven cancers. Pourdehnad M; Truitt ML; Siddiqi IN; Ducker GS; Shokat KM; Ruggero D Proc Natl Acad Sci U S A; 2013 Jul; 110(29):11988-93. PubMed ID: 23803853 [TBL] [Abstract][Full Text] [Related]
8. c-Myc dependent expression of pro-apoptotic Bim renders HER2-overexpressing breast cancer cells dependent on anti-apoptotic Mcl-1. Campone M; Noël B; Couriaud C; Grau M; Guillemin Y; Gautier F; Gouraud W; Charbonnel C; Campion L; Jézéquel P; Braun F; Barré B; Coqueret O; Barillé-Nion S; Juin P Mol Cancer; 2011 Sep; 10():110. PubMed ID: 21899728 [TBL] [Abstract][Full Text] [Related]
9. Concurrent HDAC and mTORC1 inhibition attenuate androgen receptor and hypoxia signaling associated with alterations in microRNA expression. Ellis L; Lehet K; Ramakrishnan S; Adelaiye R; Miles KM; Wang D; Liu S; Atadja P; Carducci MA; Pili R PLoS One; 2011; 6(11):e27178. PubMed ID: 22087262 [TBL] [Abstract][Full Text] [Related]
10. The E-Id protein axis modulates the activities of the PI3K-AKT-mTORC1-Hif1a and c-myc/p19Arf pathways to suppress innate variant TFH cell development, thymocyte expansion, and lymphomagenesis. Miyazaki M; Miyazaki K; Chen S; Chandra V; Wagatsuma K; Agata Y; Rodewald HR; Saito R; Chang AN; Varki N; Kawamoto H; Murre C Genes Dev; 2015 Feb; 29(4):409-25. PubMed ID: 25691468 [TBL] [Abstract][Full Text] [Related]
11. Combined inhibition of PI3K-related DNA damage response kinases and mTORC1 induces apoptosis in MYC-driven B-cell lymphomas. Shortt J; Martin BP; Newbold A; Hannan KM; Devlin JR; Baker AJ; Ralli R; Cullinane C; Schmitt CA; Reimann M; Hall MN; Wall M; Hannan RD; Pearson RB; McArthur GA; Johnstone RW Blood; 2013 Apr; 121(15):2964-74. PubMed ID: 23403624 [TBL] [Abstract][Full Text] [Related]
12. microRNA regulation of mammalian target of rapamycin expression and activity controls estrogen receptor function and RAD001 sensitivity. Martin EC; Rhodes LV; Elliott S; Krebs AE; Nephew KP; Flemington EK; Collins-Burow BM; Burow ME Mol Cancer; 2014 Oct; 13():229. PubMed ID: 25283550 [TBL] [Abstract][Full Text] [Related]
13. Differential effects of selective inhibitors targeting the PI3K/AKT/mTOR pathway in acute lymphoblastic leukemia. Badura S; Tesanovic T; Pfeifer H; Wystub S; Nijmeijer BA; Liebermann M; Falkenburg JH; Ruthardt M; Ottmann OG PLoS One; 2013; 8(11):e80070. PubMed ID: 24244612 [TBL] [Abstract][Full Text] [Related]
14. Equivalent benefit of mTORC1 blockade and combined PI3K-mTOR blockade in a mouse model of tuberous sclerosis. Pollizzi K; Malinowska-Kolodziej I; Stumm M; Lane H; Kwiatkowski D Mol Cancer; 2009 Jun; 8():38. PubMed ID: 19527517 [TBL] [Abstract][Full Text] [Related]
16. p53-dependent senescence delays Emu-myc-induced B-cell lymphomagenesis. Post SM; Quintás-Cardama A; Terzian T; Smith C; Eischen CM; Lozano G Oncogene; 2010 Mar; 29(9):1260-9. PubMed ID: 19935700 [TBL] [Abstract][Full Text] [Related]
17. mTORC1 inhibition restricts inflammation-associated gastrointestinal tumorigenesis in mice. Thiem S; Pierce TP; Palmieri M; Putoczki TL; Buchert M; Preaudet A; Farid RO; Love C; Catimel B; Lei Z; Rozen S; Gopalakrishnan V; Schaper F; Hallek M; Boussioutas A; Tan P; Jarnicki A; Ernst M J Clin Invest; 2013 Feb; 123(2):767-81. PubMed ID: 23321674 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of mammalian target of rapamycin signaling by everolimus induces senescence in adult T-cell leukemia/lymphoma and apoptosis in peripheral T-cell lymphomas. Darwiche N; Sinjab A; Abou-Lteif G; Chedid MB; Hermine O; Dbaibo G; Bazarbachi A Int J Cancer; 2011 Aug; 129(4):993-1004. PubMed ID: 21064094 [TBL] [Abstract][Full Text] [Related]
19. A Phase II trial of the oral mTOR inhibitor everolimus in relapsed Hodgkin lymphoma. Johnston PB; Inwards DJ; Colgan JP; Laplant BR; Kabat BF; Habermann TM; Micallef IN; Porrata LF; Ansell SM; Reeder CB; Roy V; Witzig TE Am J Hematol; 2010 May; 85(5):320-4. PubMed ID: 20229590 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of mTORC1 by RAD001 (everolimus) potentiates the effects of 1,25-dihydroxyvitamin D(3) to induce growth arrest and differentiation of AML cells in vitro and in vivo. Yang J; Ikezoe T; Nishioka C; Ni L; Koeffler HP; Yokoyama A Exp Hematol; 2010 Aug; 38(8):666-76. PubMed ID: 20382200 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]