These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 23242872)

  • 21. In vivo behavior of trimethylene carbonate and ε-caprolactone-based (co)polymer networks: degradation and tissue response.
    Bat E; Plantinga JA; Harmsen MC; van Luyn MJ; Feijen J; Grijpma DW
    J Biomed Mater Res A; 2010 Dec; 95(3):940-9. PubMed ID: 20845496
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of drug solubility in amphiphilic di-block copolymer micelles: the role of polymer-drug compatibility.
    Latere Dwan'Isa JP; Rouxhet L; Préat V; Brewster ME; Ariën A
    Pharmazie; 2007 Jul; 62(7):499-504. PubMed ID: 17718189
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or epsilon-caprolactone: Degradation and tissue response.
    Pêgo AP; Van Luyn MJ; Brouwer LA; van Wachem PB; Poot AA; Grijpma DW; Feijen J
    J Biomed Mater Res A; 2003 Dec; 67(3):1044-54. PubMed ID: 14613255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlling the switching temperature of biodegradable, amorphous, shape-memory poly(rac-lactide)urethane networks by incorporation of different comonomers.
    Lendlein A; Zotzmann J; Feng Y; Alteheld A; Kelch S
    Biomacromolecules; 2009 Apr; 10(4):975-82. PubMed ID: 19253975
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biodegradable self-assembling PEG-copolymer as vehicle for poorly water-soluble drugs.
    Ould-Ouali L; Ariën A; Rosenblatt J; Nathan A; Twaddle P; Matalenas T; Borgia M; Arnold S; Leroy D; Dinguizli M; Rouxhet L; Brewster M; Préat V
    Pharm Res; 2004 Sep; 21(9):1581-90. PubMed ID: 15497683
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel approach to biodegradable block copolymers of epsilon-caprolactone and delta-valerolactone catalyzed by new aluminum metal complexes.
    Yang J; Jia L; Yin L; Yu J; Shi Z; Fang Q; Cao A
    Macromol Biosci; 2004 Dec; 4(12):1092-104. PubMed ID: 15586386
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrolytic degradation behavior of poly(rac-lactide)-block-poly(propylene glycol)-block-poly(rac-lactide) dimethacrylate derived networks designed for biomedical applications.
    Wischke C; Tripodo G; Choi NY; Lendlein A
    Macromol Biosci; 2011 Dec; 11(12):1637-46. PubMed ID: 22012787
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface.
    Kim HC; Lee H; Khetan J; Won YY
    Langmuir; 2015 Dec; 31(51):13821-33. PubMed ID: 26633595
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites.
    Li K; Huang J; Gao H; Zhong Y; Cao X; Chen Y; Zhang L; Cai J
    Biomacromolecules; 2016 Apr; 17(4):1506-15. PubMed ID: 26955741
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and characterization of nanocomposite scaffolds based on triblock copolymer of L-lactide, ε-caprolactone and nano-hydroxyapatite for bone tissue engineering.
    Torabinejad B; Mohammadi-Rovshandeh J; Davachi SM; Zamanian A
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():199-210. PubMed ID: 25063111
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An annulus fibrosus closure device based on a biodegradable shape-memory polymer network.
    Sharifi S; van Kooten TG; Kranenburg HJ; Meij BP; Behl M; Lendlein A; Grijpma DW
    Biomaterials; 2013 Nov; 34(33):8105-13. PubMed ID: 23932501
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Triblock copolymers of ε-caprolactone, L-lactide, and trimethylene carbonate: biodegradability and elastomeric behavior.
    Widjaja LK; Kong JF; Chattopadhyay S; Lipik VT; Liow SS; Abadie MJ; Venkatraman SS
    J Biomed Mater Res A; 2011 Oct; 99(1):38-46. PubMed ID: 21793195
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Route to Aliphatic Poly(ester)s with Thiol Pendant Groups: From Monomer Design to Editable Porous Scaffolds.
    Fuoco T; Finne-Wistrand A; Pappalardo D
    Biomacromolecules; 2016 Apr; 17(4):1383-94. PubMed ID: 26915640
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PEG-PLA block copolymer as potential drug carrier: preparation and characterization.
    Ben-Shabat S; Kumar N; Domb AJ
    Macromol Biosci; 2006 Dec; 6(12):1019-25. PubMed ID: 17128420
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Combinatorial Photocrosslinking Method for the Preparation of Porous Structures with Widely Differing Properties.
    Zant E; Blokzijl MM; Grijpma DW
    Macromol Rapid Commun; 2015 Nov; 36(21):1902-1909. PubMed ID: 26205149
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis, characterization, effect of architecture on crystallization of biodegradable poly(epsilon-caprolactone)-b-poly(ethylene oxide) copolymers with different arms and nanoparticles thereof.
    Hua C; Dong CM
    J Biomed Mater Res A; 2007 Sep; 82(3):689-700. PubMed ID: 17323321
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photo-crosslinked synthetic biodegradable polymer networks for biomedical applications.
    van Bochove B; Grijpma DW
    J Biomater Sci Polym Ed; 2019 Feb; 30(2):77-106. PubMed ID: 30497347
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Robust and semi-interpenetrating hydrogels from poly(ethylene glycol) and collagen for elastomeric tissue scaffolds.
    Chan BK; Wippich CC; Wu CJ; Sivasankar PM; Schmidt G
    Macromol Biosci; 2012 Nov; 12(11):1490-501. PubMed ID: 23070957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of poly(trimethylene carbonate) network implants for annulus fibrosus tissue engineering.
    Blanquer SB; Sharifi S; Grijpma DW
    J Appl Biomater Funct Mater; 2012; 10(3):177-84. PubMed ID: 23242873
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New semi-interpenetrating network hydrogels: synthesis, characterization and properties.
    Zhao SP; Ma D; Zhang LM
    Macromol Biosci; 2006 Jun; 6(6):445-51. PubMed ID: 16761276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.