These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 23243461)

  • 1. Simulation of the Frank-Starling Law of the Heart.
    Ribarič S; Kordaš M
    Comput Math Methods Med; 2012; 2012():267834. PubMed ID: 23243461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite state machine implementation for left ventricle modeling and control.
    King JM; Bergeron CA; Taylor CE
    Biomed Eng Online; 2019 Jan; 18(1):10. PubMed ID: 30700298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiac efficiency and Starling's Law of the Heart.
    Han JC; Taberner AJ; Loiselle DS; Tran K
    J Physiol; 2022 Oct; 600(19):4265-4285. PubMed ID: 35998082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frank-Starling mechanism, fluid responsiveness, and length-dependent activation: Unravelling the multiscale behaviors with an in silico analysis.
    Kosta S; Dauby PC
    PLoS Comput Biol; 2021 Oct; 17(10):e1009469. PubMed ID: 34634040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force-dependent recruitment from myosin OFF-state increases end-systolic pressure-volume relationship in left ventricle.
    Mann CK; Lee LC; Campbell KS; Wenk JF
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2683-2692. PubMed ID: 32346808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of cardiovascular physiology: the diastolic function(s) of the heart.
    Podnar T; Runovc F; Kordas M
    Comput Biol Med; 2002 Sep; 32(5):363-77. PubMed ID: 12102754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solving a century-old conundrum underlying cardiac force-length relations.
    Han JC; Pham T; Taberner AJ; Loiselle DS; Tran K
    Am J Physiol Heart Circ Physiol; 2019 Apr; 316(4):H781-H793. PubMed ID: 30707611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional significance of the Frank-Starling mechanism under physiological and pathophysiological conditions.
    Jacob R; Dierberger B; Kissling G
    Eur Heart J; 1992 Nov; 13 Suppl E():7-14. PubMed ID: 1478214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frank-Starling mechanism retains recirculation fraction of myocardial Ca(2+) in the beating heart.
    Mizuno J; Araki J; Mohri S; Minami H; Doi Y; Fujinaka W; Miyaji K; Kiyooka T; Oshima Y; Iribe G; Hirakawa M; Suga H
    Jpn J Physiol; 2001 Dec; 51(6):733-43. PubMed ID: 11846965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Timing of depolarization and contraction in the paced canine left ventricle: model and experiment.
    Kerckhoffs RC; Faris OP; Bovendeerd PH; Prinzen FW; Smits K; McVeigh ER; Arts T
    J Cardiovasc Electrophysiol; 2003 Oct; 14(10 Suppl):S188-95. PubMed ID: 14760923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dimensional reductions of a cardiac model for effective validation and calibration.
    Caruel M; Chabiniok R; Moireau P; Lecarpentier Y; Chapelle D
    Biomech Model Mechanobiol; 2014 Aug; 13(4):897-914. PubMed ID: 24317551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Replication of the Frank-Starling response in a mock circulation loop.
    Gregory SD; Stevens M; Timms D; Pearcy M
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6825-8. PubMed ID: 22255906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contraction-excitation feedback in an ejecting whole heart model--dependence of action potential duration on left ventricular diastolic and systolic pressures.
    Coulshed DS; Cowan JC
    Cardiovasc Res; 1991 Apr; 25(4):343-52. PubMed ID: 1884392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Cardiac preload and central venous pressure].
    Weyland A; Grüne F
    Anaesthesist; 2009 May; 58(5):506-12. PubMed ID: 19384456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Existence of the Frank-Starling mechanism in the failing human heart. Investigations on the organ, tissue, and sarcomere levels.
    Holubarsch C; Ruf T; Goldstein DJ; Ashton RC; Nickl W; Pieske B; Pioch K; Lüdemann J; Wiesner S; Hasenfuss G; Posival H; Just H; Burkhoff D
    Circulation; 1996 Aug; 94(4):683-9. PubMed ID: 8772688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multi-scale cardiovascular system model can account for the load-dependence of the end-systolic pressure-volume relationship.
    Pironet A; Desaive T; Kosta S; Lucas A; Paeme S; Collet A; Pretty CG; Kolh P; Dauby PC
    Biomed Eng Online; 2013 Jan; 12():8. PubMed ID: 23363818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Re-visiting the Frank-Starling nexus.
    Han JC; Loiselle D; Taberner A; Tran K
    Prog Biophys Mol Biol; 2021 Jan; 159():10-21. PubMed ID: 32407748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of ventricular volume reduction surgery in the dilated, poorly contractile left ventricle: a simple finite element analysis.
    Ratcliffe MB; Hong J; Salahieh A; Ruch S; Wallace AW
    J Thorac Cardiovasc Surg; 1998 Oct; 116(4):566-77. PubMed ID: 9766584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The slow force response to stretch in atrial and ventricular myocardium from human heart: functional relevance and subcellular mechanisms.
    Kockskämper J; von Lewinski D; Khafaga M; Elgner A; Grimm M; Eschenhagen T; Gottlieb PA; Sachs F; Pieske B
    Prog Biophys Mol Biol; 2008; 97(2-3):250-67. PubMed ID: 18466959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multi-physics and multi-scale lumped parameter model of cardiac contraction of the left ventricle: a conceptual model from the protein to the organ scale.
    Bhattacharya-Ghosh B; Schievano S; Díaz-Zuccarini V
    Comput Biol Med; 2012 Oct; 42(10):982-92. PubMed ID: 22921613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.