These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 23243566)

  • 1. A liquid optical phantom with tissue-like heterogeneities for confocal microscopy.
    Wang D; Chen Y; Liu JT
    Biomed Opt Express; 2012 Dec; 3(12):3153-60. PubMed ID: 23243566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bessel-beam illumination in dual-axis confocal microscopy mitigates resolution degradation caused by refractive heterogeneities.
    Chen Y; Glaser A; Liu JT
    J Biophotonics; 2017 Jan; 10(1):68-74. PubMed ID: 27667127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulated-alignment dual-axis (MAD) confocal microscopy for deep optical sectioning in tissues.
    Leigh SY; Chen Y; Liu JT
    Biomed Opt Express; 2014 Jun; 5(6):1709-20. PubMed ID: 24940534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Miniature in vivo MEMS-based line-scanned dual-axis confocal microscope for point-of-care pathology.
    Yin C; Glaser AK; Leigh SY; Chen Y; Wei L; Pillai PC; Rosenberg MC; Abeytunge S; Peterson G; Glazowski C; Sanai N; Mandella MJ; Rajadhyaksha M; Liu JT
    Biomed Opt Express; 2016 Feb; 7(2):251-63. PubMed ID: 26977337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing the beam steering and distortion of Gaussian and Bessel beams focused in tissues with microscopic heterogeneities.
    Chen Y; Liu JT
    Biomed Opt Express; 2015 Apr; 6(4):1318-30. PubMed ID: 25909015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient rejection of scattered light enables deep optical sectioning in turbid media with low-numerical-aperture optics in a dual-axis confocal architecture.
    Liu JT; Mandella MJ; Crawford JM; Contag CH; Wang TD; Kino GS
    J Biomed Opt; 2008; 13(3):034020. PubMed ID: 18601565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the tissue-imaging performance of confocal microscope architectures via Monte Carlo simulations.
    Chen Y; Wang D; Liu JT
    Opt Lett; 2012 Nov; 37(21):4495-7. PubMed ID: 23114341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of line-scanned and point-scanned dual-axis confocal microscope performance.
    Wang D; Chen Y; Wang Y; Liu JT
    Opt Lett; 2013 Dec; 38(24):5280-3. PubMed ID: 24322237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the imaging performance of light sheet microscopies in highly scattering tissues.
    Glaser AK; Wang Y; Liu JT
    Biomed Opt Express; 2016 Feb; 7(2):454-66. PubMed ID: 26977355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of pupil design for point-scanning and line-scanning confocal microscopy.
    Patel YG; Rajadhyaksha M; Dimarzio CA
    Biomed Opt Express; 2011 Aug; 2(8):2231-42. PubMed ID: 21833360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-free in vivo pathology of human epithelia with a high-speed handheld dual-axis confocal microscope.
    Yin C; Wei L; Abeytunge S; Peterson G; Rajadhyaksha M; Liu J
    J Biomed Opt; 2019 Mar; 24(3):30501. PubMed ID: 32717147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of full-pupil line-scanning reflectance confocal microscopy in human skin and oral mucosa in vivo.
    Larson B; Abeytunge S; Rajadhyaksha M
    Biomed Opt Express; 2011 Jul; 2(7):2055-67. PubMed ID: 21750780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of dependent scattering on the optical properties of Intralipid tissue phantoms.
    Di Ninni P; Martelli F; Zaccanti G
    Biomed Opt Express; 2011 Aug; 2(8):2265-78. PubMed ID: 21833363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Video-rate scanning confocal microscopy and microendoscopy.
    Nichols AJ; Evans CL
    J Vis Exp; 2011 Oct; (56):. PubMed ID: 22042305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial calibration of structured illumination fluorescence microscopy using capillary tissue phantoms.
    Lee GS; Miele LF; Turhan A; Lin M; Hanidziar D; Konerding MA; Mentzer SJ
    Microsc Res Tech; 2009 Feb; 72(2):85-92. PubMed ID: 18937249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a microstructured tissue phantom with adaptable optical properties for use with microscopes and fluorescence lifetime imaging systems.
    Freymüller C; Ströbl S; Aumiller M; Eisel M; Sroka R; Rühm A
    Lasers Surg Med; 2022 Sep; 54(7):1010-1026. PubMed ID: 35753039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison between optical-resolution photoacoustic microscopy and confocal laser scanning microscopy for turbid sample imaging.
    U-Thainual P; Kim DH
    J Biomed Opt; 2015 Dec; 20(12):121202. PubMed ID: 26256640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A handheld laser scanning confocal reflectance imaging-confocal Raman microspectroscopy system.
    Patil CA; Arrasmith CL; Mackanos MA; Dickensheets DL; Mahadevan-Jansen A
    Biomed Opt Express; 2012 Mar; 3(3):488-502. PubMed ID: 22435097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reflectance confocal microscopy of optical phantoms.
    Jacques SL; Wang B; Samatham R
    Biomed Opt Express; 2012 Jun; 3(6):1162-72. PubMed ID: 22741065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing factors influencing calibration and optical property determination in quantitative reflectance spectroscopy to improve standardization.
    Schmidt I; Nagengast W; Robinson D
    J Biomed Opt; 2022 Apr; 27(7):. PubMed ID: 35393792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.