These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
410 related articles for article (PubMed ID: 23243847)
1. [Preliminary study concerning emissions of the volatile organic compounds from cooking oils]. He WQ; Tian G; Nie L; Qu S; Li J; Wang MY Huan Jing Ke Xue; 2012 Sep; 33(9):2973-8. PubMed ID: 23243847 [TBL] [Abstract][Full Text] [Related]
2. [Study on the chemical compositions of VOCs emitted by cooking oils based on GC-MS]. He WQ; Nie L; Tian G; Li J; Shao X; Wang MY Huan Jing Ke Xue; 2013 Dec; 34(12):4605-11. PubMed ID: 24640897 [TBL] [Abstract][Full Text] [Related]
3. Emissions of volatile organic compounds (VOCs) from cooking and their speciation: A case study for Shanghai with implications for China. Wang H; Xiang Z; Wang L; Jing S; Lou S; Tao S; Liu J; Yu M; Li L; Lin L; Chen Y; Wiedensohler A; Chen C Sci Total Environ; 2018 Apr; 621():1300-1309. PubMed ID: 29054635 [TBL] [Abstract][Full Text] [Related]
4. [Analysis on oil fume particles in catering industry cooking emission]. Tan DS; Kuang YC; Liu X; Dai FH Huan Jing Ke Xue; 2012 Jun; 33(6):1958-63. PubMed ID: 22946182 [TBL] [Abstract][Full Text] [Related]
5. Characteristics and health risk assessment of volatile organic compounds (VOCs) in restaurants in Shanghai. Huang X; Han D; Cheng J; Chen X; Zhou Y; Liao H; Dong W; Yuan C Environ Sci Pollut Res Int; 2020 Jan; 27(1):490-499. PubMed ID: 31797266 [TBL] [Abstract][Full Text] [Related]
6. Removing volatile organic compounds in cooking fume by nano-sized TiO Li YH; Cheng SW; Yuan CS; Lai TF; Hung CH Chemosphere; 2018 Oct; 208():808-817. PubMed ID: 29906755 [TBL] [Abstract][Full Text] [Related]
7. Volatile organic compounds from residential solid fuel burning in Guanzhong Plain, China: Source-related profiles and risks. Sun J; Wang J; Shen Z; Huang Y; Zhang Y; Niu X; Cao J; Zhang Q; Xu H; Zhang N; Li X Chemosphere; 2019 Apr; 221():184-192. PubMed ID: 30639814 [TBL] [Abstract][Full Text] [Related]
8. Quantification of the impact of cooking processes on indoor concentrations of volatile organic species and primary and secondary organic aerosols. Klein F; Baltensperger U; Prévôt ASH; El Haddad I Indoor Air; 2019 Nov; 29(6):926-942. PubMed ID: 31449696 [TBL] [Abstract][Full Text] [Related]
9. Chemical characterization and influencing factors of gaseous and particulate components in cooking oil fume (COF) from traditional Chinese dishes: Insights from high-resolution mass spectrometry. Jia B; Liu B; Liu Z; Shi L; Son JH; Morawska L; Tan W; Zhu L; Wang L; Chen J Environ Pollut; 2024 Nov; 360():124666. PubMed ID: 39098640 [TBL] [Abstract][Full Text] [Related]
10. Comparative study of the adsorption performance of a multi-sorbent bed (Carbotrap, Carbopack X, Carboxen 569) and a Tenax TA adsorbent tube for the analysis of volatile organic compounds (VOCs). Gallego E; Roca FJ; Perales JF; Guardino X Talanta; 2010 May; 81(3):916-24. PubMed ID: 20298873 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous indoor and outdoor on-line hourly monitoring of atmospheric volatile organic compounds in an urban building. The role of inside and outside sources. de Blas M; Navazo M; Alonso L; Durana N; Gomez MC; Iza J Sci Total Environ; 2012 Jun; 426():327-35. PubMed ID: 22542255 [TBL] [Abstract][Full Text] [Related]
12. The Content and Emission form of Volatile Organic Compounds from Cooking Oils: A Gas Chromatography-Mass Spectrometry (GC-MS) Analysis. Zhang G; Sun F; Li H; Lin Y; Zhao K; Fang L Int J Environ Res Public Health; 2023 Jan; 20(3):. PubMed ID: 36767163 [TBL] [Abstract][Full Text] [Related]
13. Ozone and secondary organic aerosol formation potential from anthropogenic volatile organic compounds emissions in China. Wu W; Zhao B; Wang S; Hao J J Environ Sci (China); 2017 Mar; 53():224-237. PubMed ID: 28372747 [TBL] [Abstract][Full Text] [Related]
14. Emission of volatile organic compounds during open fire cooking with wood biomass: Traditional three-stone open fire vs. gasifier cooking stove in rural Kenya. Rebryk A; Kozyatnyk I; Njenga M Sci Total Environ; 2024 Jul; 934():173183. PubMed ID: 38777046 [TBL] [Abstract][Full Text] [Related]
15. Determination of time- and size-dependent fine particle emission with varied oil heating in an experimental kitchen. Li S; Gao J; He Y; Cao L; Li A; Mo S; Chen Y; Cao Y J Environ Sci (China); 2017 Jan; 51():157-164. PubMed ID: 28115126 [TBL] [Abstract][Full Text] [Related]
16. Evaluation and characterization of volatile air toxics indoors in a heavy polluted city of northwestern China in wintertime. Huang Y; Su T; Wang L; Wang N; Xue Y; Dai W; Lee SC; Cao J; Ho SSH Sci Total Environ; 2019 Apr; 662():470-480. PubMed ID: 30695747 [TBL] [Abstract][Full Text] [Related]
17. Very volatile organic compounds: an understudied class of indoor air pollutants. Salthammer T Indoor Air; 2016 Feb; 26(1):25-38. PubMed ID: 25471461 [TBL] [Abstract][Full Text] [Related]
18. Emission and profile characteristic of volatile organic compounds emitted from coke production, iron smelt, heating station and power plant in Liaoning Province, China. Shi J; Deng H; Bai Z; Kong S; Wang X; Hao J; Han X; Ning P Sci Total Environ; 2015 May; 515-516():101-8. PubMed ID: 25704266 [TBL] [Abstract][Full Text] [Related]
19. [Characteristics of volatile organic compounds (VOCs) emitted from biofuel combustion in China]. Li XH; Wang SX; Hao JM Huan Jing Ke Xue; 2011 Dec; 32(12):3515-21. PubMed ID: 22468511 [TBL] [Abstract][Full Text] [Related]
20. Odor and VOC emissions from pan frying of mackerel at three stages: raw, well-done, and charred. Ahn JH; Szulejko JE; Kim KH; Kim YH; Kim BW Int J Environ Res Public Health; 2014 Nov; 11(11):11753-71. PubMed ID: 25405596 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]