BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 23244291)

  • 1. The neural basis of nonvisual object recognition memory in the rat.
    Albasser MM; Olarte-Sánchez CM; Amin E; Horne MR; Newton MJ; Warburton EC; Aggleton JP
    Behav Neurosci; 2013 Feb; 127(1):70-85. PubMed ID: 23244291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Qualitatively different modes of perirhinal-hippocampal engagement when rats explore novel vs. familiar objects as revealed by c-Fos imaging.
    Albasser MM; Poirier GL; Aggleton JP
    Eur J Neurosci; 2010 Jan; 31(1):134-47. PubMed ID: 20092559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The recognition of a novel-object in a novel context leads to hippocampal and parahippocampal c-Fos involvement.
    Arias N; Méndez M; Arias JL
    Behav Brain Res; 2015 Oct; 292():44-9. PubMed ID: 26072392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping parahippocampal systems for recognition and recency memory in the absence of the rat hippocampus.
    Kinnavane L; Amin E; Horne M; Aggleton JP
    Eur J Neurosci; 2014 Dec; 40(12):3720-34. PubMed ID: 25264133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting and discriminating novel objects: The impact of perirhinal cortex disconnection on hippocampal activity patterns.
    Kinnavane L; Amin E; Olarte-Sánchez CM; Aggleton JP
    Hippocampus; 2016 Nov; 26(11):1393-1413. PubMed ID: 27398938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contrasting networks for recognition memory and recency memory revealed by immediate-early gene imaging in the rat.
    Olarte-Sánchez CM; Kinnavane L; Amin E; Aggleton JP
    Behav Neurosci; 2014 Aug; 128(4):504-22. PubMed ID: 24933661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel spatial arrangements of familiar visual stimuli promote activity in the rat hippocampal formation but not the parahippocampal cortices: a c-fos expression study.
    Jenkins TA; Amin E; Pearce JM; Brown MW; Aggleton JP
    Neuroscience; 2004; 124(1):43-52. PubMed ID: 14960338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in the behavioural testing and network imaging of rodent recognition memory.
    Kinnavane L; Albasser MM; Aggleton JP
    Behav Brain Res; 2015 May; 285():67-78. PubMed ID: 25106740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping visual recognition memory through expression of the immediate early gene c-fos.
    Zhu XO; McCabe BJ; Aggleton JP; Brown MW
    Neuroreport; 1996 Jul; 7(11):1871-5. PubMed ID: 8905683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contrasting brain activity patterns for item recognition memory and associative recognition memory: insights from immediate-early gene functional imaging.
    Aggleton JP; Brown MW; Albasser MM
    Neuropsychologia; 2012 Nov; 50(13):3141-55. PubMed ID: 22634248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in Fos expression in the rat brain after unilateral lesions of the anterior thalamic nuclei.
    Jenkins TA; Dias R; Amin E; Aggleton JP
    Eur J Neurosci; 2002 Oct; 16(8):1425-32. PubMed ID: 12405955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using fos imaging in the rat to reveal the anatomical extent of the disruptive effects of fornix lesions.
    Vann SD; Brown MW; Erichsen JT; Aggleton JP
    J Neurosci; 2000 Nov; 20(21):8144-52. PubMed ID: 11050137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional connectivity of anterior retrosplenial cortex in object recognition memory.
    de Landeta AB; Pereyra M; Miranda M; Bekinschtein P; Medina JH; Katche C
    Neurobiol Learn Mem; 2021 Dec; 186():107544. PubMed ID: 34737148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional organization of the medial temporal lobe memory system following neonatal hippocampal lesion in rhesus monkeys.
    Chareyron LJ; Banta Lavenex P; Amaral DG; Lavenex P
    Brain Struct Funct; 2017 Dec; 222(9):3899-3914. PubMed ID: 28488186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Granular and dysgranular retrosplenial cortices provide qualitatively different contributions to spatial working memory: evidence from immediate-early gene imaging in rats.
    Pothuizen HH; Davies M; Albasser MM; Aggleton JP; Vann SD
    Eur J Neurosci; 2009 Sep; 30(5):877-88. PubMed ID: 19712100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separate but interacting recognition memory systems for different senses: the role of the rat perirhinal cortex.
    Albasser MM; Amin E; Iordanova MD; Brown MW; Pearce JM; Aggleton JP
    Learn Mem; 2011 Jul; 18(7):435-43. PubMed ID: 21685150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contrasting hippocampal and perirhinal cortex function using immediate early gene imaging.
    Aggleton JP; Brown MW
    Q J Exp Psychol B; 2005; 58(3-4):218-33. PubMed ID: 16194966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anterior retrosplenial cortex is required for long-term object recognition memory.
    de Landeta AB; Pereyra M; Medina JH; Katche C
    Sci Rep; 2020 Mar; 10(1):4002. PubMed ID: 32152383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of the novelty or familiarity of visual stimuli on the expression of the immediate early gene c-fos in rat brain.
    Zhu XO; Brown MW; McCabe BJ; Aggleton JP
    Neuroscience; 1995 Dec; 69(3):821-9. PubMed ID: 8596651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lateral entorhinal cortex is critical for novel object-context recognition.
    Wilson DI; Langston RF; Schlesiger MI; Wagner M; Watanabe S; Ainge JA
    Hippocampus; 2013 May; 23(5):352-66. PubMed ID: 23389958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.