These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 23244452)

  • 1. Magnetic shielding in and around benzene and cyclobutadiene: a source of information about aromaticity, antiaromaticity, and chemical bonding.
    Karadakov PB; Horner KE
    J Phys Chem A; 2013 Jan; 117(2):518-23. PubMed ID: 23244452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic Shielding, Aromaticity, Antiaromaticity, and Bonding in the Low-Lying Electronic States of Benzene and Cyclobutadiene.
    Karadakov PB; Hearnshaw P; Horner KE
    J Org Chem; 2016 Nov; 81(22):11346-11352. PubMed ID: 27788323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ground- and excited-state aromaticity and antiaromaticity in benzene and cyclobutadiene.
    Karadakov PB
    J Phys Chem A; 2008 Aug; 112(31):7303-9. PubMed ID: 18636691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computation of through-space NMR shielding effects by small-ring aromatic and antiaromatic hydrocarbons.
    Martin NH; Loveless DM; Main KL; Wade DC
    J Mol Graph Model; 2006 Dec; 25(4):389-95. PubMed ID: 16574447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is the conventional interpretation of the anisotropic effects of C=C double bonds and aromatic rings in NMR spectra in terms of the π-electron shielding/deshielding contributions correct?
    Baranac-Stojanović M; Koch A; Kleinpeter E
    Chemistry; 2012 Jan; 18(1):370-6. PubMed ID: 22135110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aromaticity and antiaromaticity in the low-lying electronic states of cyclooctatetraene.
    Karadakov PB
    J Phys Chem A; 2008 Dec; 112(49):12707-13. PubMed ID: 19007145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic Shielding, Aromaticity, Antiaromaticity and Bonding in the Low-Lying Electronic States of S
    Karadakov PB; Al-Yassiri MAH; Cooper DL
    Chemistry; 2018 Nov; 24(63):16791-16803. PubMed ID: 30270473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excited-State Aromaticity Reversals in Naphthalene and Anthracene.
    Karadakov PB; Al-Yassiri MAH
    J Phys Chem A; 2023 Apr; 127(14):3148-3162. PubMed ID: 37010990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aromaticity: molecular-orbital picture of an intuitive concept.
    Pierrefixe SC; Bickelhaupt FM
    Chemistry; 2007; 13(22):6321-8. PubMed ID: 17577248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Different are the Diamagnetic and Paramagnetic Contributions to Off-Nucleus Shielding in Aromatic and Antiaromatic Rings?
    Karadakov PB
    Chemphyschem; 2023 May; 24(9):e202300038. PubMed ID: 36811600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sigma and pi contributions to the induced magnetic field: indicators for the mobility of electrons in molecules.
    Heine T; Islas R; Merino G
    J Comput Chem; 2007 Jan; 28(1):302-9. PubMed ID: 17109432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aromaticity reversals and their effect on bonding in the low-lying electronic states of cyclooctatetraene.
    Karadakov PB; Preston N
    Phys Chem Chem Phys; 2021 Nov; 23(43):24750-24756. PubMed ID: 34710205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dianion and dication of tetrabenzo[5.7]fulvalene. Greater antiaromaticity than aromaticity in comparable systems.
    Piekarski AM; Mills NS; Yousef A
    J Am Chem Soc; 2008 Nov; 130(44):14883-90. PubMed ID: 18850706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpretation of electron delocalization in benzene, cyclobutadiene, and borazine based on visualization of individual molecular orbital contributions to the induced magnetic field.
    Charistos ND; Papadopoulos AG; Sigalas MP
    J Phys Chem A; 2014 Feb; 118(6):1113-22. PubMed ID: 24444188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic shielding paints an accurate and easy-to-visualize portrait of aromaticity.
    Karadakov PB; VanVeller B
    Chem Commun (Camb); 2021 Sep; 57(75):9504-9513. PubMed ID: 34546260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antiaromaticity-Aromaticity Interplay in Fused Benzenoid Systems Using Molecular Electrostatic Potential Topology.
    Anjalikrishna PK; Gadre SR; Suresh CH
    J Phys Chem A; 2021 Jul; 125(27):5999-6012. PubMed ID: 34210140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of sigma-diatropicity of the cyclopropane molecule.
    Pelloni S; Lazzeretti P; Zanasi R
    J Phys Chem A; 2007 Aug; 111(33):8163-9. PubMed ID: 17665879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton transfers in aromatic and antiaromatic systems. How aromatic or antiaromatic is the transition state? An ab initio study.
    Bernasconi CF; Wenzel PJ; Ragains ML
    J Am Chem Soc; 2008 Apr; 130(14):4934-44. PubMed ID: 18338888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical bonding and aromaticity in furan, pyrrole, and thiophene: a magnetic shielding study.
    Horner KE; Karadakov PB
    J Org Chem; 2013 Aug; 78(16):8037-43. PubMed ID: 23879676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An energetic measure of aromaticity and antiaromaticity based on the Pauling-Wheland resonance energies.
    Mo Y; von Ragué Schleyer P
    Chemistry; 2006 Feb; 12(7):2009-20. PubMed ID: 16342222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.