These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 23245189)

  • 1. Coarse-grained modeling of protein second osmotic virial coefficients: sterics and short-ranged attractions.
    Grünberger A; Lai PK; Blanco MA; Roberts CJ
    J Phys Chem B; 2013 Jan; 117(3):763-70. PubMed ID: 23245189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coarse-grained model for colloidal protein interactions, B(22), and protein cluster formation.
    Blanco MA; Sahin E; Robinson AS; Roberts CJ
    J Phys Chem B; 2013 Dec; 117(50):16013-28. PubMed ID: 24289039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Consistent Ornstein-Zernike Approximation (SCOZA) and exact second virial coefficients and their relationship with critical temperature for colloidal or protein suspensions with short-ranged attractive interactions.
    Gazzillo D; Pini D
    J Chem Phys; 2013 Oct; 139(16):164501. PubMed ID: 24182043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coarse-Grained Antibody Models for "Weak" Protein-Protein Interactions from Low to High Concentrations.
    Calero-Rubio C; Saluja A; Roberts CJ
    J Phys Chem B; 2016 Jul; 120(27):6592-605. PubMed ID: 27314827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Domain decomposition-based structural condensation of large protein structures for understanding their conformational dynamics.
    Kim JI; Na S; Eom K
    J Comput Chem; 2011 Jan; 32(1):161-9. PubMed ID: 20645300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Protein Interactions of Concentrated Globular Protein Solutions Using Colloidal Models.
    Woldeyes MA; Calero-Rubio C; Furst EM; Roberts CJ
    J Phys Chem B; 2017 May; 121(18):4756-4767. PubMed ID: 28422503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of full-atomic and coarse-grained models to examine the molecular fluctuations of c-AMP dependent protein kinase.
    Keskin O
    J Biomol Struct Dyn; 2002 Dec; 20(3):333-45. PubMed ID: 12437372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The multiscale coarse-graining method. III. A test of pairwise additivity of the coarse-grained potential and of new basis functions for the variational calculation.
    Das A; Andersen HC
    J Chem Phys; 2009 Jul; 131(3):034102. PubMed ID: 19624176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coarse- and fine-grained models for proteins: evaluation by decoy discrimination.
    Kauffman C; Karypis G
    Proteins; 2013 May; 81(5):754-73. PubMed ID: 23184763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of atomic-level and coarse-grained models for liquid hydrocarbons from molecular dynamics configurational entropy estimates.
    Baron R; de Vries AH; Hünenberger PH; van Gunsteren WF
    J Phys Chem B; 2006 Apr; 110(16):8464-73. PubMed ID: 16623533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The multiscale coarse-graining method. VIII. Multiresolution hierarchical basis functions and basis function selection in the construction of coarse-grained force fields.
    Das A; Andersen HC
    J Chem Phys; 2012 May; 136(19):194113. PubMed ID: 22612086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Essential Dynamics and Fixed-Length Coarse Graining for Multidomain Proteins.
    Zhu Y; Zhao X; Xiang C; Liu X; Li J
    J Phys Chem B; 2024 May; 128(21):5147-5156. PubMed ID: 38758598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bayesian statistics approach to multiscale coarse graining.
    Liu P; Shi Q; Daumé H; Voth GA
    J Chem Phys; 2008 Dec; 129(21):214114. PubMed ID: 19063551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of coarse grained models for hydrogen bonds in proteins.
    De Sancho D; Rey A
    J Comput Chem; 2007 May; 28(7):1187-99. PubMed ID: 17299766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minimalist models for proteins: a comparative analysis.
    Tozzini V
    Q Rev Biophys; 2010 Aug; 43(3):333-71. PubMed ID: 20707940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple, efficient polarizable coarse-grained water model for molecular dynamics simulations.
    Riniker S; van Gunsteren WF
    J Chem Phys; 2011 Feb; 134(8):084110. PubMed ID: 21361530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting High-Concentration Interactions of Monoclonal Antibody Solutions: Comparison of Theoretical Approaches for Strongly Attractive Versus Repulsive Conditions.
    Calero-Rubio C; Saluja A; Sahin E; Roberts CJ
    J Phys Chem B; 2019 Jul; 123(27):5709-5720. PubMed ID: 31241333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The multiscale coarse-graining method: assessing its accuracy and introducing density dependent coarse-grain potentials.
    Izvekov S; Chung PW; Rice BM
    J Chem Phys; 2010 Aug; 133(6):064109. PubMed ID: 20707563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of amino acid sequence in the self-association of therapeutic monoclonal antibodies: insights from coarse-grained modeling.
    Chaudhri A; Zarraga IE; Yadav S; Patapoff TW; Shire SJ; Voth GA
    J Phys Chem B; 2013 Feb; 117(5):1269-79. PubMed ID: 23316912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the electrophoresis of peptides and proteins: improvements in the "bead method" to include ion relaxation and "finite size effects".
    Xin Y; Hess R; Ho N; Allison S
    J Phys Chem B; 2006 Dec; 110(49):25033-44. PubMed ID: 17149927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.