BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 23245313)

  • 1. Microarray analysis of gene expression profiles in ripening pineapple fruits.
    Koia JH; Moyle RL; Botella JR
    BMC Plant Biol; 2012 Dec; 12():240. PubMed ID: 23245313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo assembly, characterization and functional annotation of pineapple fruit transcriptome through massively parallel sequencing.
    Ong WD; Voo LY; Kumar VS
    PLoS One; 2012; 7(10):e46937. PubMed ID: 23091603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PineappleDB: an online pineapple bioinformatics resource.
    Moyle RL; Crowe ML; Ripi-Koia J; Fairbairn DJ; Botella JR
    BMC Plant Biol; 2005 Oct; 5():21. PubMed ID: 16202174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genotypic and environmental effects on the level of ascorbic acid, phenolic compounds and related gene expression during pineapple fruit development and ripening.
    Léchaudel M; Darnaudery M; Joët T; Fournier P; Joas J
    Plant Physiol Biochem; 2018 Sep; 130():127-138. PubMed ID: 29982169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery of precursor and mature microRNAs and their putative gene targets using high-throughput sequencing in pineapple (Ananas comosus var. comosus).
    Yusuf NH; Ong WD; Redwan RM; Latip MA; Kumar SV
    Gene; 2015 Oct; 571(1):71-80. PubMed ID: 26115767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of ESTs and data mining of pineapple EST-SSRs.
    Ong WD; Voo CL; Kumar SV
    Mol Biol Rep; 2012 May; 39(5):5889-96. PubMed ID: 22207174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene expression in developing watermelon fruit.
    Wechter WP; Levi A; Harris KR; Davis AR; Fei Z; Katzir N; Giovannoni JJ; Salman-Minkov A; Hernandez A; Thimmapuram J; Tadmor Y; Portnoy V; Trebitsh T
    BMC Genomics; 2008 Jun; 9():275. PubMed ID: 18534026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational annotation of genes differentially expressed along olive fruit development.
    Galla G; Barcaccia G; Ramina A; Collani S; Alagna F; Baldoni L; Cultrera NG; Martinelli F; Sebastiani L; Tonutti P
    BMC Plant Biol; 2009 Oct; 9():128. PubMed ID: 19852839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional and evolution characterization of SWEET sugar transporters in Ananas comosus.
    Guo C; Li H; Xia X; Liu X; Yang L
    Biochem Biophys Res Commun; 2018 Feb; 496(2):407-414. PubMed ID: 29307830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression patterns, activities and carbohydrate-metabolizing regulation of sucrose phosphate synthase, sucrose synthase and neutral invertase in pineapple fruit during development and ripening.
    Zhang XM; Wang W; Du LQ; Xie JH; Yao YL; Sun GM
    Int J Mol Sci; 2012; 13(8):9460-9477. PubMed ID: 22949808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated Metabolome and Transcriptome Analysis Reveals a Potential Mechanism for Water Accumulation Mediated Translucency in Pineapple (
    Chen J; Yao Y; Zeng H; Zhang X
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The expression patterns of bromelain and AcCYS1 correlate with blackheart resistance in pineapple fruits submitted to postharvest chilling stress.
    Raimbault AK; Zuily-Fodil Y; Soler A; Mora P; Cruz de Carvalho MH
    J Plant Physiol; 2013 Nov; 170(16):1442-6. PubMed ID: 23777839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved High-Quality Genome Assembly and Annotation of Pineapple (
    Yow AG; Bostan H; Castanera R; Ruggieri V; Mengist MF; Curaba J; Young R; Gillitt N; Iorizzo M
    Genes (Basel); 2021 Dec; 13(1):. PubMed ID: 35052394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The pineapple MADS-box gene family and the evolution of early monocot flower.
    Hu J; Chang X; Zhang Y; Yu X; Qin Y; Sun Y; Zhang L
    Sci Rep; 2021 Jan; 11(1):849. PubMed ID: 33441609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative EST transcript profiling of peach fruits under different post-harvest conditions reveals candidate genes associated with peach fruit quality.
    Vizoso P; Meisel LA; Tittarelli A; Latorre M; Saba J; Caroca R; Maldonado J; Cambiazo V; Campos-Vargas R; Gonzalez M; Orellana A; Silva H
    BMC Genomics; 2009 Sep; 10():423. PubMed ID: 19744325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of Metabolomics and Transcriptomics to Explore Dynamic Alterations in Fruit Color and Quality in 'Comte de Paris' Pineapples during Ripening Processes.
    Song K; Zhang X; Liu J; Yao Q; Li Y; Hou X; Liu S; Qiu X; Yang Y; Chen L; Hong K; Lin L
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developing pineapple fruit has a small transcriptome dominated by metallothionein.
    Moyle R; Fairbairn DJ; Ripi J; Crowe M; Botella JR
    J Exp Bot; 2005 Jan; 56(409):101-12. PubMed ID: 15520025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome sequence analysis of an ornamental plant, Ananas comosus var. bracteatus, revealed the potential unigenes involved in terpenoid and phenylpropanoid biosynthesis.
    Ma J; Kanakala S; He Y; Zhang J; Zhong X
    PLoS One; 2015; 10(3):e0119153. PubMed ID: 25769053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative metabolomics and sensory evaluation of pineapple (Ananas comosus) reveal the importance of ripening stage compared to cultivar.
    Ikram MMM; Mizuno R; Putri SP; Fukusaki E
    J Biosci Bioeng; 2021 Dec; 132(6):592-598. PubMed ID: 34593317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative transcriptome analysis of two contrasting watermelon genotypes during fruit development and ripening.
    Zhu Q; Gao P; Liu S; Zhu Z; Amanullah S; Davis AR; Luan F
    BMC Genomics; 2017 Jan; 18(1):3. PubMed ID: 28049426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.