BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 23245458)

  • 1. Composition of in situ burn residue as a function of weathering conditions.
    Fritt-Rasmussen J; Ascanius BE; Brandvik PJ; Villumsen A; Stenby EH
    Mar Pollut Bull; 2013 Feb; 67(1-2):75-81. PubMed ID: 23245458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring ignitability for in situ burning of oil spills weathered under Arctic conditions: from laboratory studies to large-scale field experiments.
    Fritt-Rasmussen J; Brandvik PJ
    Mar Pollut Bull; 2011 Aug; 62(8):1780-5. PubMed ID: 21714974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PAHs in high Arctic copepods Calanus hyperboreus following exposure of residues from in situ burning of oil spill.
    Fritt-Rasmussen J; Jørgensen CJ; Wegeberg S; Lassen P; Møller EF; Gustavson K
    Sci Total Environ; 2024 Feb; 912():169015. PubMed ID: 38040369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical composition of floating and sunken in-situ burn residues from the Deepwater Horizon oil spill.
    Stout SA; Payne JR
    Mar Pollut Bull; 2016 Jul; 108(1-2):186-202. PubMed ID: 27132992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygenated weathering products of Deepwater Horizon oil come from surprising precursors.
    Hall GJ; Frysinger GS; Aeppli C; Carmichael CA; Gros J; Lemkau KL; Nelson RK; Reddy CM
    Mar Pollut Bull; 2013 Oct; 75(1-2):140-149. PubMed ID: 23993388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of cyclodextrin-enhanced extraction of crude oil from contaminated porous media.
    Gao H; Miles MS; Meyer BM; Wong RL; Overton EB
    J Environ Monit; 2012 Aug; 14(8):2164-9. PubMed ID: 22699807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effectiveness of a chemical herder in association with in-situ burning of oil spills in ice-infested water.
    van Gelderen L; Fritt-Rasmussen J; Jomaas G
    Mar Pollut Bull; 2017 Feb; 115(1-2):345-351. PubMed ID: 28003056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of environmental factors on photodegradation of polycyclic aromatic hydrocarbons (PAHs) in the water-soluble fraction of Kuwait crude oil in seawater.
    Saeed T; Ali LN; Al-Bloushi A; Al-Hashash H; Al-Bahloul M; Al-Khabbaz A; Al-Khayat A
    Mar Environ Res; 2011 Sep; 72(3):143-50. PubMed ID: 21840588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of weathering effects on the distribution of aromatic steroid hydrocarbons in crude oils and oil residues.
    Wang C; Chen B; Zhang B; Guo P; Zhao M
    Environ Sci Process Impacts; 2014; 16(10):2408-14. PubMed ID: 25144907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale oil-in-ice experiment in the Barents Sea: monitoring of oil in water and MetOcean interactions.
    Faksness LG; Brandvik PJ; Daae RL; Leirvik F; Børseth JF
    Mar Pollut Bull; 2011 May; 62(5):976-84. PubMed ID: 21396663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spilled Oils: Static Mixtures or Dynamic Weathering and Bioavailability?
    Carls MG; Larsen ML; Holland LG
    PLoS One; 2015; 10(9):e0134448. PubMed ID: 26332909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oil spill management: elimination kinetics of PAHs in mussels (Mytilus edulis).
    Enwere R; Pollard P; Webster L; Davies I; Moffat C
    J Environ Monit; 2009 Jun; 11(6):1284-91. PubMed ID: 19513461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The fate of the aqueous phase polycyclic aromatic hydrocarbon fraction in a detention pond system.
    Neary K; Boving TB
    Environ Pollut; 2011 Oct; 159(10):2882-90. PubMed ID: 21636191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PAHs distribution in sediments associated with gas hydrate and oil seepage from the Gulf of Mexico.
    Wang C; Sun H; Chang Y; Song Z; Qin X
    Mar Pollut Bull; 2011 Dec; 62(12):2714-23. PubMed ID: 21982427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioaccumulation of petroleum hydrocarbons in arctic amphipods in the oil development area of the Alaskan Beaufort Sea.
    Neff JM; Durell GS
    Integr Environ Assess Manag; 2012 Apr; 8(2):301-19. PubMed ID: 22006590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review.
    Rubio-Clemente A; Torres-Palma RA; Peñuela GA
    Sci Total Environ; 2014 Apr; 478():201-25. PubMed ID: 24552655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The importance of both potency and mechanism in dose-response analysis: an example from exposure of Pacific herring (Clupea pallasi) embryos to low concentrations of weathered crude oil.
    Neff JM; Page DS; Landrum PF; Chapman PM
    Mar Pollut Bull; 2013 Feb; 67(1-2):7-15. PubMed ID: 23321595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of photochemical processes in marine oil spill fingerprinting.
    Radović JR; Aeppli C; Nelson RK; Jimenez N; Reddy CM; Bayona JM; Albaigés J
    Mar Pollut Bull; 2014 Feb; 79(1-2):268-77. PubMed ID: 24355571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling oil weathering and transport in sea ice.
    Afenyo M; Khan F; Veitch B; Yang M
    Mar Pollut Bull; 2016 Jun; 107(1):206-215. PubMed ID: 27130467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polycyclic aromatic hydrocarbons in coastal sediments of southwest Taiwan: an appraisal of diagnostic ratios in source recognition.
    Jiang JJ; Lee CL; Fang MD; Liu JT
    Mar Pollut Bull; 2009 May; 58(5):752-60. PubMed ID: 19181350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.