These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 23245630)
1. Development of anti-icing materials by chemical tailoring of hydrophobic textured metallic surfaces. Charpentier TV; Neville A; Millner P; Hewson RW; Morina A J Colloid Interface Sci; 2013 Mar; 394():539-44. PubMed ID: 23245630 [TBL] [Abstract][Full Text] [Related]
2. Are superhydrophobic surfaces best for icephobicity? Jung S; Dorrestijn M; Raps D; Das A; Megaridis CM; Poulikakos D Langmuir; 2011 Mar; 27(6):3059-66. PubMed ID: 21319778 [TBL] [Abstract][Full Text] [Related]
3. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. Mishchenko L; Hatton B; Bahadur V; Taylor JA; Krupenkin T; Aizenberg J ACS Nano; 2010 Dec; 4(12):7699-707. PubMed ID: 21062048 [TBL] [Abstract][Full Text] [Related]
4. Predictive model for ice formation on superhydrophobic surfaces. Bahadur V; Mishchenko L; Hatton B; Taylor JA; Aizenberg J; Krupenkin T Langmuir; 2011 Dec; 27(23):14143-50. PubMed ID: 21899285 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS). Wilson PW; Lu W; Xu H; Kim P; Kreder MJ; Alvarenga J; Aizenberg J Phys Chem Chem Phys; 2013 Jan; 15(2):581-5. PubMed ID: 23183624 [TBL] [Abstract][Full Text] [Related]
6. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. Kim P; Wong TS; Alvarenga J; Kreder MJ; Adorno-Martinez WE; Aizenberg J ACS Nano; 2012 Aug; 6(8):6569-77. PubMed ID: 22680067 [TBL] [Abstract][Full Text] [Related]
7. Investigating the effects of solid surfaces on ice nucleation. Li K; Xu S; Shi W; He M; Li H; Li S; Zhou X; Wang J; Song Y Langmuir; 2012 Jul; 28(29):10749-54. PubMed ID: 22741592 [TBL] [Abstract][Full Text] [Related]
8. Improved Icephobic Properties on Surfaces with a Hydrophilic Lubricating Liquid. Ozbay S; Yuceel C; Erbil HY ACS Appl Mater Interfaces; 2015 Oct; 7(39):22067-77. PubMed ID: 26375386 [TBL] [Abstract][Full Text] [Related]
9. Mechanism of supercooled droplet freezing on surfaces. Jung S; Tiwari MK; Doan NV; Poulikakos D Nat Commun; 2012 Jan; 3():615. PubMed ID: 22233625 [TBL] [Abstract][Full Text] [Related]
10. New insight into icing and de-icing properties of hydrophobic and hydrophilic structured surfaces based on core-shell particles. Chanda J; Ionov L; Kirillova A; Synytska A Soft Matter; 2015 Dec; 11(47):9126-34. PubMed ID: 26411650 [TBL] [Abstract][Full Text] [Related]
11. Chemical Nature of Heterogeneous Electrofreezing of Supercooled Water Revealed on Polar (Pyroelectric) Surfaces. Javitt LF; Curland S; Weissbuch I; Ehre D; Lahav M; Lubomirsky I Acc Chem Res; 2022 May; 55(10):1383-1394. PubMed ID: 35504292 [TBL] [Abstract][Full Text] [Related]
12. Wetting hysteresis induced by temperature changes: Supercooled water on hydrophobic surfaces. Heydari G; Sedighi Moghaddam M; Tuominen M; Fielden M; Haapanen J; Mäkelä JM; Claesson PM J Colloid Interface Sci; 2016 Apr; 468():21-33. PubMed ID: 26821148 [TBL] [Abstract][Full Text] [Related]
14. Effect of wettability on sessile drop freezing: when superhydrophobicity stimulates an extreme freezing delay. Boinovich L; Emelyanenko AM; Korolev VV; Pashinin AS Langmuir; 2014 Feb; 30(6):1659-68. PubMed ID: 24491217 [TBL] [Abstract][Full Text] [Related]
15. Anti-icing potential of superhydrophobic Ti6Al4V surfaces: ice nucleation and growth. Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T Langmuir; 2015 Oct; 31(39):10799-806. PubMed ID: 26367109 [TBL] [Abstract][Full Text] [Related]
16. Bio-inspired strategies for anti-icing. Lv J; Song Y; Jiang L; Wang J ACS Nano; 2014 Apr; 8(4):3152-69. PubMed ID: 24592934 [TBL] [Abstract][Full Text] [Related]
17. Onsager heat of transport for water vapour at the surface of water and ice: thermal accommodation coefficients for water vapour on a stainless-steel surface. Pursell CJ; Phillips LF Phys Chem Chem Phys; 2006 Oct; 8(40):4694-9. PubMed ID: 17047768 [TBL] [Abstract][Full Text] [Related]
18. Dynamics of ice nucleation on water repellent surfaces. Alizadeh A; Yamada M; Li R; Shang W; Otta S; Zhong S; Ge L; Dhinojwala A; Conway KR; Bahadur V; Vinciquerra AJ; Stephens B; Blohm ML Langmuir; 2012 Feb; 28(6):3180-6. PubMed ID: 22235939 [TBL] [Abstract][Full Text] [Related]
19. Shear-flow induced detachment of Saccharomyces cerevisiae from stainless steel: influence of yeast and solid surface properties. Guillemot G; Vaca-Medina G; Martin-Yken H; Vernhet A; Schmitz P; Mercier-Bonin M Colloids Surf B Biointerfaces; 2006 May; 49(2):126-35. PubMed ID: 16621474 [TBL] [Abstract][Full Text] [Related]
20. Anti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets. Zhang Q; He M; Chen J; Wang J; Song Y; Jiang L Chem Commun (Camb); 2013 May; 49(40):4516-8. PubMed ID: 23575638 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]